浏览全部资源
扫码关注微信
1.浙江理工大学 纺织科学与工程学院(国际丝绸学院) 杭州 310018
2.浙江省现代纺织技术创新中心 绍兴 312000
E-mail: sunhui@zstu.edu.cn
收稿日期:2024-11-08,
录用日期:2025-02-03,
网络出版日期:2025-03-06,
纸质出版日期:2025-04-20
移动端阅览
唐甄婧, 孙伊宁, 谢有秀, 陈高原, 孙辉, 于斌. CoAl-LDH@M-PP MB复合熔喷材料的制备及其吸附分离性能. 高分子学报, 2025, 56(4), 611-622
Tang, Z. J.; Sun, Y. N.; Xie, Y. X.; Chen, G. Y.; Sun, H.; Yu, B. Preparation of CoAl-LDH@M-PP MB composite melt-blown materials and their adsorption and separation properties. Acta Polymerica Sinica, 2025, 56(4), 611-622
唐甄婧, 孙伊宁, 谢有秀, 陈高原, 孙辉, 于斌. CoAl-LDH@M-PP MB复合熔喷材料的制备及其吸附分离性能. 高分子学报, 2025, 56(4), 611-622 DOI: 10.11777/j.issn1000-3304.2024.24276. CSTR: 32057.14.GFZXB.2024.7351.
Tang, Z. J.; Sun, Y. N.; Xie, Y. X.; Chen, G. Y.; Sun, H.; Yu, B. Preparation of CoAl-LDH@M-PP MB composite melt-blown materials and their adsorption and separation properties. Acta Polymerica Sinica, 2025, 56(4), 611-622 DOI: 10.11777/j.issn1000-3304.2024.24276. CSTR: 32057.14.GFZXB.2024.7351.
为使聚丙烯熔喷非织造材料(PP MB)具有良好的染料吸附和油水分离性能,首先通过聚多巴胺(PDA)对PP MB表面进行亲水改性得到M-PP MB,再利用水热法在M-PP MB表面一步原位合成钴铝基层状双金属氢氧化物(CoAl-LDH),得到复合熔喷材料CoAl-LDH@M-PP MB. 通过对复合材料的形貌、结构及其染料吸附和油水分离性能进行表征,结果表明:当Co与Al的原料比为1:9时,制备的CoAl-LDH@M-PP MB-1/9表面的CoAl-LDH为边缘呈尖刺状的圆片形,在25 ℃、刚果红(CR)水溶液浓度为50 mg/L的条件下,CoAl-LDH@M-PP MB-1/9对CR的吸附效率在30 min内可达99.00%以上;当以正己烷为油相时,CoAl-LDH@M-PP MB-1/9对正己烷/水混合物的分离效率可达到99.33%,在80次重复使用期间,CoAl-LDH@M-PP MB-1/9对正己烷/水混合物的油水分离效率均大于97.41%,表明其具有出色的油水分离及重复使用性能.
In order to make polypropylene melt-blown nonwoven (PP MB) have good dye adsorption and oil-water separation properties
M-PP MB first was prepared by hydrophilic modification of PP MB surface with polydopamine (PDA). Then Co-Al-based Layered Double Hydroxide (CoAl-LDH) were fixed on the surface of M-PP MB by one-step
in situ
hydrothermal synthesis to obtain CoAl-LDH@M-PP MB composite melt-blown nonwovens. The effects of the synthesis process conditions on the morphology and structure of CoAl-LDH@M-PP MB were explored
and the organic dye adsorption performance and oil-water separation performance were investigated. The results showed that when the raw material concentration ratio of Co to Al is 1:9
CoAl-LDH on the surface of the prepared CoAl-LDH@M-PP MB-1/9 presents disc shape with a sharp spine edge. Under the initial concentration of Congo red (CR) aqueous solution of 50 mg/L at 25
o
C
the adsorption efficiency of CoAL-LDH@M-PPMB-1/9 for CR can reach over 99.00% within 30 min. When
n
-hexane is used as the oil phase
the separation efficiency of CoAl-LDH@M-PP MB-1/9 for
n
-hexane/water mixture can reach 99.33%
during 80 times o
f reuse
the oil-water separation efficiency of CoAl-LDH@M-PPMB-1/9 for
n
-hexane/water mixture is still greater than 97.41%
which shows that it has excellent oil-water separation and reuse performance.
Trommetter G. ; Khaska S. ; Le Gal La Salle, C. ; Brosillon S. ; Goetz V. ; Plantard G. ; Mendret J. Removal of 39 contaminants of emerging concern found in wastewater effluent by coupling nanofiltration and infiltration into saturated soil column . Chemosphere , 2024 , 363 , 142705 . doi: 10.1016/j.chemosphere.2024.142705 http://dx.doi.org/10.1016/j.chemosphere.2024.142705
Kots P. A. ; Liu S. B. ; Vance B. C. ; Wang C. ; Sheehan J. D. ; Vlachos D. G. Polypropylene plastic waste conversion to lubricants over Ru/TiO 2 catalysts . ACS Catal. , 2021 , 11 ( 13 ), 8104 - 8115 . doi: 10.1021/acscatal.1c00874 http://dx.doi.org/10.1021/acscatal.1c00874
Uheida A. ; Mejía H. G. ; Abdel-Rehim M. ; Hamd W. ; Dutta J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system . J. Hazard. Mater. , 2021 , 406 , 124299 . doi: 10.1016/j.jhazmat.2020.124299 http://dx.doi.org/10.1016/j.jhazmat.2020.124299
Sui H. R. ; Wu K. N. ; Zhao G. ; Yang K. ; Dong J. Y. ; Li J. Y. Greatly enhanced temperature stability of eco-friendly polypropylene for cable insulation by multifold long-chain branched structures . Chem. Eng. J. , 2024 , 485 , 149811 . doi: 10.1016/j.cej.2024.149811 http://dx.doi.org/10.1016/j.cej.2024.149811
Aljohani M. M. ; Al-Qahtani S. D. ; Alshareef M. ; El-Desouky M. G. ; El-Bindary A. A. ; El-Metwaly N. M. ; El-Bindary M. A. Highly efficient adsorption and removal bio-staining dye from industrial wastewater onto mesoporous Ag-MOFs . Process. Saf. Environ. Prot. , 2023 , 172 , 395 - 407 . doi: 10.1016/j.psep.2023.02.036 http://dx.doi.org/10.1016/j.psep.2023.02.036
Rukhsana Usha Z. ; Babiker D. M. D. ; Yang J. S. ; Chen X. ; Li L. B. Robust super-wetting biaxial polypropylene membrane with multi-scale roughness structures for highly efficient oil/water emulsion separation . J. Environ. Chem. Eng. , 2023 , 11 ( 3 ), 109670 . doi: 10.1016/j.jece.2023.109670 http://dx.doi.org/10.1016/j.jece.2023.109670
Alaburdaitė R. ; Krylova V. Polypropylene film surface modification for improving its hydrophilicity for innovative applications . Polym. Degrad. Stabil. , 2023 , 211 , 110334 . doi: 10.1016/j.polymdegradstab.2023.110334 http://dx.doi.org/10.1016/j.polymdegradstab.2023.110334
Fu Y. G. ; Li Y. H. ; Lü Q. F. In situ construction of sea urchin-like structural NiCo-LDH coated cobalt-nitrogen Co-doped carbon as high-performance electrode for supercapacitor . J. Energy Storage , 2024 , 100 , 113510 . doi: 10.1016/j.est.2024.113510 http://dx.doi.org/10.1016/j.est.2024.113510
Farhan A. ; Khalid A. ; Maqsood N. ; Iftekhar S. ; Sharif H. M. A. ; Qi F. ; Sillanpää M. ; Asif M. B. Progress in layered double hydroxides (LDHs): synthesis and application in adsorption, catalysis and photoreduction . Sci. Total Environ. , 2024 , 912 , 169160 . doi: 10.1016/j.scitotenv.2023.169160 http://dx.doi.org/10.1016/j.scitotenv.2023.169160
Liu P. ; Wu L. S. ; Guo Y. Y. ; Huang X. L. ; Guo Z. G. High crystalline LDHs with strong adsorption properties effectively remove oil and micro-nano plastics . J. Clean. Prod. , 2024 , 437 , 140628 . doi: 10.1016/j.jclepro.2024.140628 http://dx.doi.org/10.1016/j.jclepro.2024.140628
Nian P. ; Wang X. J. ; Zuo X. L. ; Li S. M. ; Qiao S. Y. ; Wei Y. B. Switchable superlyophobic CoAl-layered double hydroxide (LDH)-based mesh membranes for separation of various oil/water systems and removal of soluble organic pollutants . Sep. Purif. Technol. , 2024 , 338 , 126500 . doi: 10.1016/j.seppur.2024.126500 http://dx.doi.org/10.1016/j.seppur.2024.126500
Jo W. K. ; Tonda S. Novel CoAl-LDH/g-C 3 N 4 /RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants . J. Hazard. Mater. , 2019 , 368 , 778 - 787 . doi: 10.1016/j.jhazmat.2019.01.114 http://dx.doi.org/10.1016/j.jhazmat.2019.01.114
Chen Y. X. ; Jing C. ; Zhang X. ; Jiang D. B. ; Liu X. Y. ; Dong B. Q. ; Feng L. ; Li S. C. ; Zhang Y. X. Acid-salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of methyl orange dye . J. Colloid Interface Sci. , 2019 , 548 , 100 - 109 . doi: 10.1016/j.jcis.2019.03.107 http://dx.doi.org/10.1016/j.jcis.2019.03.107
Lima E. C. ; Sher F. ; Guleria A. ; Saeb M. R. ; Anastopoulos I. ; Tran H. N. ; Hosseini-Bandegharaei A. Is one performing the treatment data of adsorption kinetics correctly? J. Environ. Chem. Eng. , 2021 , 9 ( 2 ), 104813 . doi: 10.1016/j.jece.2020.104813 http://dx.doi.org/10.1016/j.jece.2020.104813
Li X. M. ; Xu J. L. ; Luo X. X. ; Shi J. X. Efficient adsorption of dyes from aqueous solution using a novel functionalized magnetic biochar: Synthesis, kinetics, isotherms, adsorption mechanism, and reusability . Bioresour. Technol. , 2022 , 360 , 127526 . doi: 10.1016/j.biortech.2022.127526 http://dx.doi.org/10.1016/j.biortech.2022.127526
Hussain S. ; Kamran M. ; Khan S. A. ; Shaheen K. ; Shah Z. ; Suo H. L. ; Khan Q. ; Shah A. B. ; Rehman W. U. ; Al-Ghamdi Y. O. ; Ghani U. Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films . Int. J. Biol. Macromol. , 2021 , 168 , 383 - 394 . doi: 10.1016/j.ijbiomac.2020.12.054 http://dx.doi.org/10.1016/j.ijbiomac.2020.12.054
Zhang J. Y. ; Wang L. J. ; Zhang H. ; Long X. ; Zheng Y. J. ; Zuo Y. ; Jiao F. P. Biomimetic modified polypropylene membranes based on tea polyphenols for efficient oil/water separation . Prog. Org. Coat. , 2022 , 164 , 106723 . doi: 10.1016/j.porgcoat.2022.106723 http://dx.doi.org/10.1016/j.porgcoat.2022.106723
Changani Z. ; Razmjou A. ; Taheri-Kafrani A. ; Warkiani M. E. ; Asadnia M. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry . Chemosphere , 2020 , 249 , 126079 . doi: 10.1016/j.chemosphere.2020.126079 http://dx.doi.org/10.1016/j.chemosphere.2020.126079
Maria Cardinale A. ; Fortunato M. ; Ardini F. NiFe based synthetic LDH, study of chromate adsorption mechanisms . Results Surf. Interfaces , 2024 , 16 , 100242 . doi: 10.1016/j.rsurfi.2024.100242 http://dx.doi.org/10.1016/j.rsurfi.2024.100242
Wang J. ; Zhang Q. ; Cheng Y. ; Song F. Y. ; Ding Y. Z. ; Shao M. W. Self-reinforced composites based on polypropylene fiber and graphene nano-platelets/polypropylene film . Carbon , 2022 , 189 , 586 - 595 . doi: 10.1016/j.carbon.2021.12.098 http://dx.doi.org/10.1016/j.carbon.2021.12.098
Zeng B. ; Wang Q. Q. ; Mo L. W. ; Jin F. ; Zhu J. ; Tang M. S. Synthesis of Mg-Al LDH and its calcined form with natural materials for efficient Cr(VI) removal . J. Environ. Chem. Eng. , 2022 , 10 ( 6 ), 108605 . doi: 10.1016/j.jece.2022.108605 http://dx.doi.org/10.1016/j.jece.2022.108605
Li M. ; Chen X. ; He J. J. ; Liu S. C. ; Tang Y. ; Wen X. G. Porous NiCo-LDH microspheres obtained by freeze-drying for efficient dye and Cr(VI) adsorption . J. Alloys Compd. , 2024 , 976 , 173107 . doi: 10.1016/j.jallcom.2023.173107 http://dx.doi.org/10.1016/j.jallcom.2023.173107
Cui J. Y. ; Zhou Z. P. ; Xie A. T. ; Wang Q. Q. ; Liu S. W. ; Lang J. H. ; Li C. X. ; Yan Y. S. ; Dai J. D. Facile preparation of grass-like structured NiCo-LDH/PVDF composite membrane for efficient oil-water emulsion separation . J. Membr. Sci. , 2019 , 573 , 226 - 233 . doi: 10.1016/j.memsci.2018.11.064 http://dx.doi.org/10.1016/j.memsci.2018.11.064
Liu P. ; Wu L. S. ; Guo Y. Y. ; Huang X. L. ; Guo Z. G. Rapid preparation of Ni/Fe-LDH@ stainless steel mesh with interfacial emulsion breaking effect for efficient oil-in-water emulsion separation . Colloids Surf. A Physicochem. Eng. Aspects , 2024 , 681 , 132792 . doi: 10.1016/j.colsurfa.2023.132792 http://dx.doi.org/10.1016/j.colsurfa.2023.132792
Hou Z. Q. ; Lv X. H. ; Wang H. C. ; Xie Z. Y. ; Zhu X. T. ; Liu M. M. Co/Al LDH-based dual superlyophobic honeycomb-like surfaces for on-demand oil/water separation and dye degradation . Colloids Surf. A Physicochem. Eng. Aspects , 2024 , 687 , 133461 . doi: 10.1016/j.colsurfa.2024.133461 http://dx.doi.org/10.1016/j.colsurfa.2024.133461
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构