浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 工程塑料院重点实验室 北京 100190
2.中国科学院大学 北京 100049
[ "董侠,女,1973年生. 中国科学院化学研究所研究员、博士生导师,中国科学院大学岗位教授,重点研发计划项目首席科学家. 2001年在东华大学获得博士学位,2001~2003年在中国科学院化学研究所从事博士后研究,出站后留所工作,2009~2010年在美国阿克伦大学做访问学者. 发表学术论文220余篇,授权中国发明专利50余件. 获第24届中国发明专利金奖、2023年度巾帼文明岗、中国科学院科技促进发展奖、中国石油和化学工业联合会科技进步一等奖、冯新德高分子奖、上海市科技进步一等奖、中国化学会高分子科学创新论文奖等奖励. 主要从事聚酰胺、聚烯烃等高分子材料的制备、加工相关的应用基础研究,取得系列工程化技术突破,实现了长碳链聚酰胺及其弹性体的工业化." ]
收稿日期:2024-11-21,
录用日期:2024-12-31,
网络出版日期:2025-03-12,
纸质出版日期:2025-05-20
移动端阅览
邵建铭, 仇超, 董侠, 王笃金. 反式-1,4-聚异戊二烯(杜仲胶)改性方法与形状记忆应用进展. 高分子学报, 2025, 56(5), 734-753
Shao, J. M.; Qiu, C.; Dong, X.; Wang, D. J. Progress in modification methods and shape memory applications of trans-1,4-polyisoprene (Eucommia ulmoides gum). Acta Polymerica Sinica, 2025, 56(5), 734-753
邵建铭, 仇超, 董侠, 王笃金. 反式-1,4-聚异戊二烯(杜仲胶)改性方法与形状记忆应用进展. 高分子学报, 2025, 56(5), 734-753 DOI: 10.11777/j.issn1000-3304.2024.24281. CSTR: 32057.14.GFZXB.2024.7339.
Shao, J. M.; Qiu, C.; Dong, X.; Wang, D. J. Progress in modification methods and shape memory applications of trans-1,4-polyisoprene (Eucommia ulmoides gum). Acta Polymerica Sinica, 2025, 56(5), 734-753 DOI: 10.11777/j.issn1000-3304.2024.24281. CSTR: 32057.14.GFZXB.2024.7339.
杜仲胶(EUG)是一种具有优秀性能的天然高分子,是我国特有的生物基高分子资源. 本文总结了杜仲胶化学改性和物理共混改性的方法,介绍了EUG作为形状记忆材料的结构和原理,总结综述了EUG形状记忆材料的制备或增强优化等技术方法,通过化学改性引入极性基团或共价交联,以及物理共混引入低分子量有机物、聚合物、无机填料和金属盐等方法,显著提升了EUG材料的力学性能和形状记忆性能. 本文最后提出了EUG形状记忆功能的发展方向.
Eucommia ulmoides
gum (EUG) is a unique bio-based polymer resource of China
renowned for its outstanding properties as a natural polymer. EUG
which shares a similar chemical composition with natural rubber
is considered an isomeric alternative. This review introduces the chemical modification and physical blending strategies applied to EUG
highlighting its potential as a shape memory material. The structure and mechanisms underpinning EUG's shape memory properties are discussed in detail. This review also systematically summarizes the preparation and performance enhancement techniques of EUG-based shape memory materials. Chemical modifications
such as the introduction of polar functional groups or covalent cross-linking
and physical blending with low-molecular-weight organic compounds
polymers
inorganic fillers
or metal salts
have been shown to significantly improve the mechanical and shape memory properties of EUG materials. The review concludes by proposing future directions for the development of EUG-based shape memory functionalitie
s. The development of EUG shape memory materials should focus on low-cost
multifunctional
and fully bio-based approaches. Enhancing the biocompatibility of the material and incorporating various functional fillers or chemical modifications can enable advanced capabilities
such as remote triggering
self-healing
and electrical conductivity. To promote the industrialization of EUG shape memory materials
interdisciplinary collaboration is essential to facilitate the transition from laboratory research to commercial application
offering a more sustainable and efficient solution for the global rubber industry.
Yu P. L. ; Wang J. ; Liu J. ; Zhou Y. ; Luo F. ; Yang M. ; Ai X. P. Preparation techniques, structural features, and bioactivities of Eucommia ulmoides polysaccharides: a review . Int. J. Biol. Macromol. , 2024 , 275 , 133686 . doi: 10.1016/j.ijbiomac.2024.133686 http://dx.doi.org/10.1016/j.ijbiomac.2024.133686
Zhang T. ; Liang Y. R. ; Jia Y. H. ; Shen R. B. ; Wang L. The effect of organic clay on the properties of TPI/NR composite materials . Phys. Scr. , 2024 , 99 ( 2 ), 025908 . doi: 10.1088/1402-4896/ad0fc5 http://dx.doi.org/10.1088/1402-4896/ad0fc5
Wei X. N. ; Peng P. ; Peng F. ; Dong J. E. Natural polymer Eucommia ulmoides rubber: a novel material . J. Agric. Food Chem. , 2021 , 69 ( 13 ), 3797 - 3821 . doi: 10.1021/acs.jafc.0c07560 http://dx.doi.org/10.1021/acs.jafc.0c07560
Duan H. Y. ; Duan X. Y. ; Miao X. H. ; Cheng H. T. ; Liang C. B. ; Zhao G. Z. ; Liu Y. Q. ; Cheng S. S. Synergistically improving mechanical properties and lowering build-up heat in natural rubber tires through nano-zinc oxide on graphene oxide and strong cross-linked interfaces derived from thiol-ene click reaction . Adv. Compos. Hybrid Mater. , 2024 , 7 ( 1 ), 7 . doi: 10.1007/s42114-023-00817-y http://dx.doi.org/10.1007/s42114-023-00817-y
Wu J. H. ; Ni Q. G. ; Kong P. ; Mi R. ; Li Y. J. ; Peng X. C. Ionic inverse vulcanized polymer cross-linked bio-based Eucommia ulmoides gum with reprocessibility, shape memory and low-frequency sound absorption capability . React. Funct. Polym. , 2024 , 194 , 105774 . doi: 10.1016/j.reactfunctpolym.2023.105774 http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105774
Wang Q. ; Xiong Y. Z. ; Dong F. P. Eucommia ulmoides gum-based engineering materials: fascinating platforms for advanced applications . J. Mater. Sci. , 2021 , 56 ( 2 ), 1855 - 1878 . doi: 10.1007/s10853-020-05345-4 http://dx.doi.org/10.1007/s10853-020-05345-4
Li D. H. ; Yang C. ; Huang Y. Q. ; Li L. ; Han W. C. ; Kang H. L. ; Yang F. ; Fang Q. H. Novel green resource material: eucommia ulmoides gum . Resour. Chem. Mater. , 2022 , 1 ( 1 ), 114 - 128 . doi: 10.1016/j.recm.2022.01.005 http://dx.doi.org/10.1016/j.recm.2022.01.005
Zhang H. C. ; Ma C. H. ; Sun R. Y. ; Liao X. J. ; Wu J. H. ; Xie M. R. Sustainable elastomer of triazolinedione-modified Eucommia ulmoides gum with enhanced elasticity and shape memory capability . Polymer , 2019 , 184 , 121904 . doi: 10.1016/j.polymer.2019.121904 http://dx.doi.org/10.1016/j.polymer.2019.121904
Han X. ; Zhang D. B. ; Nie H. R. ; He A. H. Isothermal crystallization of trans -1,4-polyisoprene from solutions: kinetic parameters and crystal modification . Polymer , 2018 , 139 , 36 - 43 . doi: 10.1016/j.polymer.2018.01.077 http://dx.doi.org/10.1016/j.polymer.2018.01.077
Lu J. ; Yang H. R. ; Ji Y. X. ; Li X. Y. ; Lv Y. K. ; Su F. M. ; Li L. B. Strong memory effect of metastable β form trans -1,4-polyisoprene above equilibrium melting temperature . Macromol. Chem. Phys. , 2017 , 218 ( 20 ), 1700235 . doi: 10.1002/macp.201700235 http://dx.doi.org/10.1002/macp.201700235
Wang X. A. ; Xiang K. W. ; Nie Y. J. ; Huang G. S. ; Wu J. R. ; Su Z. Q. Intermediate state and weak intermolecular interactions of α - trans -1,4-Polyisoprene during the gradual cooling crystallization process investigated by in situ FTIR and two-dimensional infrared correlation spectroscopy . Macromol. Res. , 2013 , 21 ( 5 ), 493 - 501 . doi: 10.1007/s13233-013-1045-2 http://dx.doi.org/10.1007/s13233-013-1045-2
Jaya Ratri P. ; Tashiro K. Application of the simultaneous measurement system of WAXD, SAXS and transmission FTIR spectra to the study of structural changes in the cold- and melt-crystallization proc esses of trans -1,4-polyisoprene . Polym. J. , 2013 , 45 ( 10 ), 1019 - 1026 . doi: 10.1038/pj.2013.31 http://dx.doi.org/10.1038/pj.2013.31
Ratri P. J. ; Tashiro K. Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly(vinylidene fluoride) and the β -to- α transition of trans-1,4-polyisoprene . Polym. J. , 2013 , 45 ( 11 ), 1107 - 1114 . doi: 10.1038/pj.2013.42 http://dx.doi.org/10.1038/pj.2013.42
Pathak A. ; Saxena V. ; Tandon P. ; Gupta V. D. Vibrational dynamics of trans-1 , 4 -polyisoprene ( β -form) . Polymer, 2006, 47 ( 14 ), 5154 - 5160 . doi: 10.1016/j.polymer.2006.04.067 http://dx.doi.org/10.1016/j.polymer.2006.04.067
Ratri P. J. ; Tashiro K. ; Iguchi M. Experimentally- and theoretically-evaluated ultimate 3-dimensional elastic constants of trans-1,4-polyisoprene α and β crystalline forms on the basis of the newly-refined crystal structure information. Polymer , 2012 , 53 ( 16 ), 3548 - 3558 . doi: 10.1016/j.polymer.2012.06.003 http://dx.doi.org/10.1016/j.polymer.2012.06.003
张继川 , 薛兆弘 , 严瑞芳 , 方世璧 . 天然高分子材料——杜仲胶的研究进展 . 高分子学报 , 2011 , ( 10 ), 1105 - 1117 . doi: 10.3724/SP.J.1105.2011.11076 http://dx.doi.org/10.3724/SP.J.1105.2011.11076
冯志博 , 张继川 , 张天鑫 , 赵秀英 , 张立群 . 杜仲橡胶的研究现状与发展前景 . 橡胶工业 , 2017 , 64 ( 10 ), 630 - 635 . doi: 10.3969/j.issn.1000-890X.2017.10.013 http://dx.doi.org/10.3969/j.issn.1000-890X.2017.10.013
方庆红 . 杜仲胶的基础与应用研究进展 . 橡胶工业 , 2023 , 70 ( 9 ), 686 - 702 .
Zhao H. ; Zhang C. B. ; Yang B. ; Zhang X. Q. ; Dong X. ; Wang D. J. ; Liu G. M. Achieving high elasticity of trans- 1,4-polyisoprene with a combination of radiation crosslinking and thiol-ene grafting . Polym. Chem. , 2023 , 14 ( 1 ), 81 - 91 . doi: 10.1039/d2py01218a http://dx.doi.org/10.1039/d2py01218a
Yang B. ; Zhao H. ; Zhang C. B. ; Zhang X. Q. ; Dong X. ; Liu G. M. ; Wang D. J. The role of crystallization and crosslinking in the hysteresis loss of vulcanized Eucommia ulmoides gum . CrystEngComm , 2023 , 25 ( 4 ), 567 - 578 . doi: 10.1039/d2ce01247b http://dx.doi.org/10.1039/d2ce01247b
Liu X. ; Wang X. Z. ; Kang K. ; Sun G. T. ; Zhu M. Q. Review on extraction, characteristic, and engineering of the Eucommia ulmodies rubber for industrial application . Ind. Crops Prod. , 2022 , 180 , 114733 . doi: 10.1016/j.indcrop.2022.114733 http://dx.doi.org/10.1016/j.indcrop.2022.114733
Olejnik O. ; Masek A. Recent progress in bio-based elastomers with intrinsic self-healing mechanisms-part I: natural rubber modifications . J. Saudi Chem. Soc. , 2023 , 27 ( 4 ), 101676 . doi: 10.1016/j.jscs.2023.101676 http://dx.doi.org/10.1016/j.jscs.2023.101676
Dong M. J. ; Zhang T. X. ; Zhang J. C. ; Hou G. Y. ; Yu M. L. ; Liu L. Mechanism analysis of Eucommia ulmoides gum reducing the rolling resistance and the application study in green tires . Polym. Test. , 2020 , 87 , 106539 . doi: 10.1016/j.polymertesting.2020.106539 http://dx.doi.org/10.1016/j.polymertesting.2020.106539
Chen B. ; Wu Q. ; Li J. ; Lin K. D. ; Chen D. C. ; Zhou C. L. ; Wu T. ; Luo X. H. ; Liu Y. L. A novel and green method to synthesize a epoxidized biomass eucommia gum as the nanofiller in the epoxy composite coating with excellent anticorrosive performance . Chem. Eng. J. , 2020 , 379 , 122323 . doi: 10.1016/j.cej.2019.122323 http://dx.doi.org/10.1016/j.cej.2019.122323
Qi X. ; Xu E. Y. ; Jia M. M. ; Zhang J. C. ; Zhang L. Q. ; Yue D. M. Bio-based, self-crosslinkable Eucommia ulmoides gum/silica hybrids with body temperature triggering shape memory capability . Macromol. Mater. Eng. , 2021 , 306 ( 11 ), 2100370 . doi: 10.1002/mame.202100370 http://dx.doi.org/10.1002/mame.202100370
Yang F. ; Dai L. ; Liu T. ; Zhou J. L. ; Fang Q. H. Preparation of high-damping soft elastomer based on Eucommia ulmoides gum . Polym. Bull. , 2020 , 77 ( 1 ), 33 - 47 . doi: 10.1007/s00289-019-02723-0 http://dx.doi.org/10.1007/s00289-019-02723-0
Zhang Z. F. ; Liu Q. Y. ; Zhang T. F. ; Li R. Y. ; Wu Y. F. ; Liu L. ; Zhao X. Y. ; Zhang J. C. Study on the phase structure and sound absorption properties of Eucommia ulmoides gum composites . Polymer , 2023 , 272 , 125801 . doi: 10.1016/j.polymer.2023.125801 http://dx.doi.org/10.1016/j.polymer.2023.125801
Rahman A. ; Sartore L. ; Bignotti F. ; Di Landro L. Autonomic self-healing in epoxidized natural rubber . ACS Appl. Mater. Interfaces , 2013 , 5 ( 4 ), 1494 - 1502 . doi: 10.1021/am303015e http://dx.doi.org/10.1021/am303015e
Vasanthan N. ; Corrigan J. P. ; Woodward A. E. Bulk crystallization of solution epoxidized trans-1 , 4 -polyisoprene . Macromol. Chem. Phys., 1994, 195 ( 7 ), 2435 - 2443 . doi: 10.1002/macp.1994.021950712 http://dx.doi.org/10.1002/macp.1994.021950712
Shao H. F. ; Wang C. X. ; Xiao P. ; Yao W. ; He A. H. ; Huang B. C. Observation of phase separation of epoxidized trans- 1,4-polyisoprene and mechanism exploration through 13 C-NMR . Polym. Bull. , 2013 , 70 ( 8 ), 2211 - 2221 . doi: 10.1007/s00289-013-0939-7 http://dx.doi.org/10.1007/s00289-013-0939-7
Yang F. ; Liu Q. ; Li X. Y. ; Yao L. ; Fang Q. H. Epoxidation of eucommia ulmoides gum by emulsion process and the performance of its vulcanizates . Polym. Bull. , 2017 , 74 ( 9 ), 3657 - 3672 . doi: 10.1007/s00289-017-1912-7 http://dx.doi.org/10.1007/s00289-017-1912-7
Li B. ; Jiang J. ; Shao H. F. ; Gong R. Y. ; Wei Y. ; Wan X. B. Research on composition and structure of epoxidized trans- 1,4-polyisoprene (ETPI) . Polym. Sci. Ser. A , 2016 , 58 ( 6 ), 968 - 974 . doi: 10.1134/s0965545x16060110 http://dx.doi.org/10.1134/s0965545x16060110
Xia L. ; Wang Y. ; Ma Z. G. ; Du A. H. ; Qiu G. X. ; Xin Z. X. Preparation of epoxidized Eucommia ulmoides gum and its application in styrene-butadiene rubber (SBR)/silica composites . Polym. Adv. Technol. , 2017 , 28 ( 1 ), 94 - 101 . doi: 10.1002/pat.3863 http://dx.doi.org/10.1002/pat.3863
Zhao Y. X. ; Huang B. C. ; Yao W. ; Cong H. L. ; Shao H. F. ; Du A. H. Epoxidation of high trans- 1,4-polyisoprene and its properties . J. Appl. Polym. Sci. , 2008 , 107 ( 5 ), 2986 - 2993 . doi: 10.1002/app.27394 http://dx.doi.org/10.1002/app.27394
Shao H. F. ; Yu Q. H. ; Yao W. ; He A. H. ; Han M. Z. ; Huang B. C. The composition and morphology of epoxidized trans- 1,4-polyisoprene obtained by heterogeneous synthesis method . Polym. Eng. Sci. , 2014 , 54 ( 6 ), 1260 - 1267 . doi: 10.1002/pen.23674 http://dx.doi.org/10.1002/pen.23674
Liu Y. J. ; Tang Z. H. ; Wu S. W. ; Guo B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers . ACS Macro Lett. , 2019 , 8 ( 2 ), 193 - 199 . doi: 10.1021/acsmacrolett.9b00012 http://dx.doi.org/10.1021/acsmacrolett.9b00012
Qi X. ; Zhang J. C. ; Zhang L. Q. ; Yue D. M. Bio-based self-healing Eucommia ulmoides ester elastomer with damping and oil resistance . J. Mater. Sci. , 2020 , 55 ( 11 ), 4940 - 4951 . doi: 10.1007/s10853-019-04272-3 http://dx.doi.org/10.1007/s10853-019-04272-3
Derouet D. ; Brosse J. C. ; Challioui A. Alcoholysis of epoxidized polyisoprenes by direct opening of oxirane rings with alcohol derivatives 2. Study on epoxidized 1,4-polyisoprene . Eur. Polym. J. , 2001 , 37 ( 7 ), 1327 - 1337 . doi: 10.1016/s0014-3057(00)00267-6 http://dx.doi.org/10.1016/s0014-3057(00)00267-6
Shao J. M. ; Dong X. ; Wang D. J. Stretchable self-healing plastic polyurethane with super-high modulus by local phase-lock strategy . Macromol. Rapid Commun. , 2023 , 44 ( 1 ), 2200299 . doi: 10.1002/marc.202200299 http://dx.doi.org/10.1002/marc.202200299
Shao J. M. ; Wang Y. ; Zhu P. ; Dong X. ; Wang D. J. Robust polyurethane materials with synergistic ionic and metal-ligand crosslinking double networks for specific Cu-ion removal . Chem. Eng. J. , 2023 , 474 , 145719 . doi: 10.1016/j.cej.2023.145719 http://dx.doi.org/10.1016/j.cej.2023.145719
Luo Z. ; Jiang X. B. ; Yao W. Synthesis of well-defined telechelic trans -1,4-polyisoprene by oxidative cleavage . Chinese J. Polym. Sci. , 2016 , 34 ( 3 ), 359 - 366 . doi: 10.1007/s10118-016-1746-z http://dx.doi.org/10.1007/s10118-016-1746-z
Tsujimoto T. ; Toshimitsu K. ; Uyama H. ; Takeno S. ; Nakazawa Y. Maleated trans -1,4-polyisoprene from Eucommia ulmoides Oliver with dynamic network structure and its shape memory property . Polymer , 2014 , 55 ( 25 ), 6488 - 6493 . doi: 10.1016/j.polymer.2014.10.035 http://dx.doi.org/10.1016/j.polymer.2014.10.035
Kongsinlark A. ; Rempel G. L. ; Prasassarakich P. Synthesis of nanosized ethylene–propylene rubber latex via polyisoprene hydrogenation . J. Appl. Polym. Sci. , 2013 , 127 ( 5 ), 3622 - 3632 . doi: 10.1002/app.37883 http://dx.doi.org/10.1002/app.37883
Cataldo F. ; Ursini O. ; Cherubini C. ; Rocchi S. Synthesis of cis- and trans- polyisoprene adduct with nitrogen dioxide (NO 2 /N 2 O 4 mixture) and a study of the thermal stability of the adduct . Polym. Degrad. Stab. , 2012 , 97 ( 7 ), 1090 - 1100 . doi: 10.1016/j.polymdegradstab.2012.04.009 http://dx.doi.org/10.1016/j.polymdegradstab.2012.04.009
Du A. H. ; Liu Y. P. ; Huang B. C. ; Yao W. Effects of chlorinated Trans -1,4-polyisoprene on cure, morphology, and mechanical properties of neoprene blends and their vulcanizates . J. Macromol. Sci. Part B , 2010 , 49 ( 3 ), 479 - 486 . doi: 10.1080/00222341003595675 http://dx.doi.org/10.1080/00222341003595675
Qi X. ; Zhang Y. D. ; Zhang L. Q. ; Yue D. M. Bioinspired sustainable polymer with stereochemistry-controllable thermomechanical properties . Macromolecules , 2023 , 56 ( 2 ), 416 - 425 . doi: 10.1021/acs.macromol.2c02300 http://dx.doi.org/10.1021/acs.macromol.2c02300
Zhang J. C. ; Xue Z. H. A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1 , 4 -polyisoprene . Polym. Test., 2011, 30 ( 7 ), 753 - 759 . doi: 10.1016/j.polymertesting.2011.06.010 http://dx.doi.org/10.1016/j.polymertesting.2011.06.010
Yang F. Z. ; Li X. F. Novel cationic rare earth metal alkyl catalysts for precise olefin polymerization . J. Polym. Sci. Part A Polym. Chem. , 2017 , 55 ( 14 ), 2271 - 2280 . doi: 10.1002/pola.28617 http://dx.doi.org/10.1002/pola.28617
Salpage S. R. ; Xu Y. W. ; Som B. ; Sindt A. J. ; Smith M. D. ; Shimizu L. S. Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene . RSC Adv. , 2016 , 6 ( 100 ), 98350 - 98355 . doi: 10.1039/c6ra18681e http://dx.doi.org/10.1039/c6ra18681e
Guo L. H. ; Jing X. Y. ; Xiong S. Y. ; Liu W. J. ; Liu Y. L. ; Liu Z. ; Chen C. L. Influences of alkyl and aryl substituents on iminopyridine Fe(II)- and co(II)-catalyzed isoprene polymerization . Polymers , 2016 , 8 ( 11 ), 389 . doi: 10.3390/polym8110389 http://dx.doi.org/10.3390/polym8110389
Bonnet F. ; Visseaux M. ; Pereira A. ; Bouyer F. ; Barbier-Baudry D. Stereospecific polymerization of isoprene with Nd(BH 4 ) 3 (THF) 3 /MgBu 2 as catalyst. Macromol. Rapid Commun., 2004, 25 ( 8 ), 873 - 877 . doi: 10.1002/marc.200300289 http://dx.doi.org/10.1002/marc.200300289
Li W. T. ; Peng W. ; Ren S. T. ; He A. H. Synthesis and characterization of trans-1 , 4 -poly(butadiene- co -isoprene) rubbers (TBIR) with different fraction and chain sequence distribution and its influence on the properties of natural rubber/TBIR/carbon black composites . Ind. Eng. Chem. Res., 2019, 58 ( 24 ), 10609 - 10617 . doi: 10.1021/acs.iecr.9b01447 http://dx.doi.org/10.1021/acs.iecr.9b01447
Song S. F. ; Fu Z. S. ; Xu J. T. ; Fan Z. Q. Facile synthesis of ethylene-propylene fully alternating copolymer and comparison with random copolymer of similar composition . J. Appl. Polym. Sci. , 2018 , 135 ( 7 ), 45816 . doi: 10.1002/app.45816 http://dx.doi.org/10.1002/app.45816
Zimmermann M. ; Törnroos K. W. ; Anwander R. Cationic rare-earth-metal half-sandwich complexes for the living trans -1,4-isoprene polymerization . Angew. Chem. Int. Ed. , 2008 , 47 ( 4 ), 775 - 778 . doi: 10.1002/anie.200703514 http://dx.doi.org/10.1002/anie.200703514
Puskas J. E. ; Gautriaud E. ; Deffieux A. ; Kennedy J. P. Natural rubber biosynthesis: a living carbocationic polymerization? Prog. Polym. Sci. , 2006 , 31 ( 6 ), 533 - 548 . doi: 10.1016/j.progpolymsci.2006.05.002 http://dx.doi.org/10.1016/j.progpolymsci.2006.05.002
Nishiura M. ; Hou Z. M. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls . Nat. Chem. , 2010 , 2 ( 4 ), 257 - 268 . doi: 10.1038/nchem.595 http://dx.doi.org/10.1038/nchem.595
Cai L. ; Long S. Y. ; Wu C. J. ; Li S. H. ; Yao C. G. ; Hua X. F. ; Na H. ; Liu D. T. ; Tang T. ; Cui D. M. Highly selective cis-1 , 4 copolymerization of dienes with polar 2 -( 3 pyridine-methylidenepent-4-en-1-yl) : an approach for recyclable elastomers . Polym. Chem., 2020, 11 ( 9 ), 1646 - 1652 . doi: 10.1039/c9py01811e http://dx.doi.org/10.1039/c9py01811e
Zhang L. X. ; Luo Y. ; Hou Z. M. Unprecedented isospecific 3,4-polymerization of isoprene by cationic rare earth metal alkyl species resulting from a binuclear precursor . J. Am. Chem. Soc. , 2005 , 127 ( 42 ), 14562 - 14563 . doi: 10.1021/ja055397r http://dx.doi.org/10.1021/ja055397r
Leicht H. ; Göttker-Schnetmann I. ; Mecking S. Synergetic effect of monomer functional group coordination in catalytic insertion polymerization . J. Am. Chem. Soc. , 2017 , 139 ( 20 ), 6823 - 6826 . doi: 10.1021/jacs.7b03087 http://dx.doi.org/10.1021/jacs.7b03087
Hornat C. C. ; Urban M. W. Shape memory effects in self-healing polymers . Prog. Polym. Sci. , 2020 , 102 , 101208 . doi: 10.1016/j.progpolymsci.2020.101208 http://dx.doi.org/10.1016/j.progpolymsci.2020.101208
Qi X. ; Pan C. L. ; Zhang L. Q. ; Yue D. M. Bio-based, self-healing, recyclable, reconfigurable multifunctional polymers with both one-way and two-way shape memory properties . ACS Appl. Mater. Interfaces , 2023 , 15 ( 2 ), 3497 - 3506 . doi: 10.1021/acsami.2c19782 http://dx.doi.org/10.1021/acsami.2c19782
Rousseau I. A. ; Mather P. T. Shape memory effect exhibited by smectic-C liquid crystalline elastomers . J. Am. Chem. Soc. , 2003 , 125 ( 50 ), 15300 - 15301 . doi: 10.1021/ja039001s http://dx.doi.org/10.1021/ja039001s
Qin H. H. ; Mather P. T. Combined one-way and two-way shape memory in a glass-forming nematic network . Macromolecules , 2009 , 42 ( 1 ), 273 - 280 . doi: 10.1021/ma8022926 http://dx.doi.org/10.1021/ma8022926
Lendlein A. ; Jiang H. Y. ; Jünger O. ; Langer R. Light-induced shape-memory polymers . Nature , 2005 , 434 ( 7035 ), 879 - 882 . doi: 10.1038/nature03496 http://dx.doi.org/10.1038/nature03496
Aoki D. ; Teramoto Y. ; Nishio Y. SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material . Biomacromolecules , 2007 , 8 ( 12 ), 3749 - 3757 . doi: 10.1021/bm7006828 http://dx.doi.org/10.1021/bm7006828
Kumpfer J. R. ; Rowan S. J. Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers . J. Am. Chem. Soc. , 2011 , 133 ( 32 ), 12866 - 12874 . doi: 10.1021/ja205332w http://dx.doi.org/10.1021/ja205332w
Li J. ; Viveros J. A. ; Wrue M. H. ; Anthamatten M. Shape-memory effects in polymer networks containing reversibly associating side-groups . Adv. Mater. , 2007 , 19 ( 19 ), 2851 - 2855 . doi: 10.1002/adma.200602260 http://dx.doi.org/10.1002/adma.200602260
Meng H. ; Li G. Q. A review of stimuli-responsive shape memory polymer composites . Polymer , 2013 , 54 ( 9 ), 2199 - 2221 . doi: 10.1016/j.polymer.2013.02.023 http://dx.doi.org/10.1016/j.polymer.2013.02.023
Xia Y. L. ; He Y. ; Zhang F. H. ; Liu Y. J. ; Leng J. S. A review of shape memory polymers and composites: mechanisms, materials, and applications . Adv. Mater. , 2021 , 33 ( 6 ), 2000713 . doi: 10.1002/adma.202000713 http://dx.doi.org/10.1002/adma.202000713
Kuang X. ; Liu G. M. ; Dong X. ; Wang D. J. Triple-shape memory epoxy based on Diels-Alder adduct molecular switch . Polymer , 2016 , 84 , 1 - 9 . doi: 10.1016/j.polymer.2015.12.033 http://dx.doi.org/10.1016/j.polymer.2015.12.033
Xie T. Recent advances in polymer shape memory . Polymer , 2011 , 52 ( 22 ), 4985 - 5000 . doi: 10.1016/j.polymer.2011.08.003 http://dx.doi.org/10.1016/j.polymer.2011.08.003
Song J. S. ; Huang B. C. ; Yu D. S. Progress of synthesis and application of trans -1,4-polyisoprene . J. Appl. Polym. Sci. , 2001 , 82 ( 1 ), 81 - 89 . doi: 10.1002/app.1826 http://dx.doi.org/10.1002/app.1826
Sun H. G. ; Zhao F. ; He P. ; Zhao S. G. Influence of amount of sulfur on mechanical, dynamic, and shape-memory properties of trans- 1,4-polyisoprene . J. Macromol. Sci. Part B , 2011 , 50 ( 5 ), 871 - 879 . doi: 10.1080/00222348.2010.497034 http://dx.doi.org/10.1080/00222348.2010.497034
Xia L. ; Ma Y. ; Wang Q. ; Meng J. F. ; Geng J. T. Facile fabrication of bio-based Eucommia Ulmoides rubber shape memory foams . Polym. Test. , 2022 , 106 , 107455 . doi: 10.1016/j.polymertesting.2021.107455 http://dx.doi.org/10.1016/j.polymertesting.2021.107455
Ni Q. G. ; Wu J. H. ; Kong P. ; Wang Y. ; Li Y. B. ; Li Y. J. ; Peng X. C. Inverse vulcanization polymer-modified Eucommia ulmoides gum with enhanced shape memory capability and sound absorption property . ACS Appl. Polym. Mater. , 2022 , 4 ( 7 ), 4689 - 4698 . doi: 10.1021/acsapm.2c00223 http://dx.doi.org/10.1021/acsapm.2c00223
Zhang Z. X. ; Wang S. ; Yu L. L. ; Yu Z. ; Wang D. ; Xia L. ; Phule A. D. Shape memory function of trans-1 , 4 -polyisoprene prepared by radiation crosslinking with a supercritical CO 2 foaming . Radiat. Phys. Chem., 2021, 189 , 109707 . doi: 10.1016/j.radphyschem.2021.109707 http://dx.doi.org/10.1016/j.radphyschem.2021.109707
Qi X. ; Zhang J. C. ; Zhang L. Q. ; Yue D. M. Bio-based, robust, shape memory, self-healing and recyclable elastomers based on a semi-interpenetrating dynamic network . J. Mater. Chem. A , 2021 , 9 ( 45 ), 25399 - 25407 . doi: 10.1039/d1ta06299a http://dx.doi.org/10.1039/d1ta06299a
Sun X. H. ; Ni X. Y. Block copolymer of trans-polyisoprene and urethane segment: crystallization behavior and morphology . J. Appl. Polym. Sci. , 2004 , 94 ( 6 ), 2286 - 2294 . doi: 10.1002/app.21016 http://dx.doi.org/10.1002/app.21016
Gu Y. ; Lin Y. C. ; Zheng J. ; Ye L. ; Wang S. ; Li S. X. ; Ma L. ; Cui D. M. ; Tang T. Cp2ZrHCl induced catalytic chain scission of diene-based polymers under mild conditions: influence of chemical environment around C=C bonds . Polymer , 2019 , 161 , 181 - 189 . doi: 10.1016/j.polymer.2018.12.019 http://dx.doi.org/10.1016/j.polymer.2018.12.019
Ni X. Y. ; Sun X. H. Block copolymer of trans-polyisoprene and urethane segment: shape memory effects . J. Appl. Polym. Sci. , 2006 , 100 ( 2 ), 879 - 885 . doi: 10.1002/app.23012 http://dx.doi.org/10.1002/app.23012
Brostowitz N. R. ; Weiss R. A. ; Cavicchi K. A. Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid . ACS Macro Lett. , 2014 , 3 ( 4 ), 374 - 377 . doi: 10.1021/mz500131r http://dx.doi.org/10.1021/mz500131r
Tian M. ; Gao W. S. ; Hu J. ; Xu X. W. ; Ning N. Y. ; Yu B. ; Zhang L. Q. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization . ACS Appl. Mater. Interfaces , 2020 , 12 ( 5 ), 6426 - 6435 . doi: 10.1021/acsami.9b19448 http://dx.doi.org/10.1021/acsami.9b19448
Wang Q. ; Ma Y. ; Meng J. F. ; Liu X. C. ; Xia L. Thermal-triggered Trans- 1,4-polyisoprene/polyethylene wax shape memory and self-healing composites . Polym. Test. , 2022 , 111 , 107601 . doi: 10.1016/j.polymertesting.2022.107601 http://dx.doi.org/10.1016/j.polymertesting.2022.107601
Teng J. X. ; Wang Z. Q. ; Liu J. B. ; Sun X. Y. Thermodynamic and shape memory properties of TPI/HDPE hybrid shape memory polymer . Polym. Test. , 2020 , 81 , 106257 . doi: 10.1016/j.polymertesting.2019.106257 http://dx.doi.org/10.1016/j.polymertesting.2019.106257
Xian J. Y. ; Geng J. T. ; Wang Y. ; Xia L. Quadruple-shape-memory effect of TPI/LDPE/HDPE composites . Polym. Adv. Technol. , 2018 , 29 ( 2 ), 982 - 988 . doi: 10.1002/pat.4209 http://dx.doi.org/10.1002/pat.4209
Wang Y. ; Xia L. ; Xin Z. X. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high-density polyethylene composites . Polym. Adv. Technol. , 2018 , 29 ( 1 ), 190 - 197 . doi: 10.1002/pat.4102 http://dx.doi.org/10.1002/pat.4102
Xia L. ; Wang Y. ; Lu N. ; Xin Z. X. Facile fabrication of shape memory composites from natural Eucommia rubber and high density polyethylene . Polym. Int. , 2017 , 66 ( 5 ), 653 - 658 . doi: 10.1002/pi.5291 http://dx.doi.org/10.1002/pi.5291
Teng J. X. ; Wang Z. Q. ; Liu J. B. ; Sun X. Y. Effect of dynamic vulcanization system on the thermodynamics and shape memory properties of TPI/HDPE hybrid shape memory polymers . Eur. Polym. J. , 2020 , 132 , 109707 . doi: 10.1016/j.eurpolymj.2020.109707 http://dx.doi.org/10.1016/j.eurpolymj.2020.109707
Wang Z. Q. ; Teng J. X. ; Sun X. Y. ; Min B. Z. Development of novel TPI/HDPE/CNTs ternary hybrid shape memory nanocomposites . Nanotechnology , 2021 , 32 ( 40 ), Nanotechnology, 2021, 32 ( 40 ), 405706 . doi: 10.1088/1361-6528/ac1018 http://dx.doi.org/10.1088/1361-6528/ac1018
Wang Y. ; Pei X. Q. ; Xia L. ; Xin Z. X. Covalent crosslinks turn natural Eucommia ulmoides gum/polybutene-1 composites into multiple shape memory materials . Polym. Compos. , 2022 , 43 ( 3 ), 1371 - 1382 . doi: 10.1002/pc.26454 http://dx.doi.org/10.1002/pc.26454
Kang H. L. ; Cui Y. ; Li X. ; Hu J. M. ; Ni H. ; Li D. H. ; Li L. ; Fang Q. H. ; Zhang J. C. Biobased and biodegradable shape memory polymers of eucommia ulmoides gum and polycaprolactone via dynamic vulcanization . Ind. Eng. Chem. Res. , 2024 , 63 ( 25 ), 11218 - 11229 . doi: 10.1021/acs.iecr.4c01094 http://dx.doi.org/10.1021/acs.iecr.4c01094
Zhang W. Z. ; Zou C. L. ; Pan Q. Z. ; Hu G. X. ; Shi H. H. ; Zhang Y. ; He X. Y. ; He Y. H. ; Zhang X. C. A triple shape memory material of trans-polyisoprene/polycaprolactone with customizable response temperature controlled by crosslinking density . Adv. Funct. Mater. , 2024 , 34 ( 33 ), 2400245 . doi: 10.1002/adfm.202400245 http://dx.doi.org/10.1002/adfm.202400245
Wang Q. ; Li Y. T. ; Xiao J. B. ; Xia L. Intelligent Eucommia ulmoides rubber/ionomer blends with thermally activated shape memory and self-healing properties . Polymers , 2023 , 15 ( 5 ), 1182 . doi: 10.3390/polym15051182 http://dx.doi.org/10.3390/polym15051182
Yue P. P. ; Hu Y. J. ; Yang Z. Y. ; Peng F. ; Yang L. Q. Renewable and functional composite film from epoxidized Eucommia ulmoides gum and industrial lignin . Ind. Crops Prod. , 2023 , 194 , 116381 . doi: 10.1016/j.indcrop.2023.116381 http://dx.doi.org/10.1016/j.indcrop.2023.116381
Xia L. ; Zhang M. ; Gao H. ; Qiu G. X. ; Xin Z. X. ; Fu W. X. Thermal- and water-induced shape memory Eucommia ulmoides rubber and microcrystalline cellulose composites . Polym. Test. , 2019 , 77 , 105910 . doi: 10.1016/j.polymertesting.2019.105910 http://dx.doi.org/10.1016/j.polymertesting.2019.105910
Sun Q. Q. ; Zhao X. K. ; Wang D. M. ; Dong J. E. ; She D. ; Peng P. Preparation and characterization of nanocrystalline cellulose/ Eucommia ulmoides gum nanocomposite film . Carbohydr. Polym. , 2018 , 181 , 825 - 832 . doi: 10.1016/j.carbpol.2017.11.070 http://dx.doi.org/10.1016/j.carbpol.2017.11.070
Xia L. ; Yang F. C. ; Wu H. ; Zhang M. ; Huang Z. G. ; Qiu G. X. ; Xin Z. X. ; Fu W. X. Novel series of thermal- and water-induced shape memory Eucommia ulmoides rubber composites . Polym. Test. , 2020 , 81 , 106212 . doi: 10.1016/j.polymertesting.2019.106212 http://dx.doi.org/10.1016/j.polymertesting.2019.106212
Zhou C. H. ; Ni Y. R. ; Liu W. T. ; Tan B. ; Yao M. C. ; Fang L. ; Lu C. H. ; Xu Z. Z. Near-infrared light-induced sequential shape recovery and separation of assembled temperature memory polymer microparticles . Macromol. Rapid Commun. , 2020 , 41 ( 8 ), 2000043 . doi: 10.1002/marc.202000043 http://dx.doi.org/10.1002/marc.202000043
Xin H. ; Li Y. F. ; Peng Q. Trans-polyisoprene/poly(ethylene- co -vinyl acetate) polymer composites as high-performance triple shape memory materials . Polymers , 2022 , 14 ( 24 ), 5344 . doi: 10.3390/polym14245344 http://dx.doi.org/10.3390/polym14245344
辛华 , 李阳帆 , 彭琪 , 陈悦 , 李新琦 . 基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重形状记忆复合材料的制备及性能 . 复合材料学报 , 2023 , 40 ( 7 ), 4039 - 4047 . doi: 10.13801/j.cnki.fhclxb.20221021.002 http://dx.doi.org/10.13801/j.cnki.fhclxb.20221021.002
Han Z. Y. ; Wang H. ; Wang Q. B. ; Liao X. J. ; Sun R. Y. ; Xie M. R. Mechanical and shape memory properties of Eucommia ulmoides gum-based elastic fibers with various architectures . React. Funct. Polym. , 2024 , 200 , 105937 . doi: 10.1016/j.reactfunctpolym.2024.105937 http://dx.doi.org/10.1016/j.reactfunctpolym.2024.105937
Sun N. ; Jiang Z. S. ; Geng J. T. ; Xia L. Ultra-hydrophobic Eucommia gum coating with temperature-responsive and shape-memory performance . Polymer , 2024 , 308 , 127379 . doi: 10.1016/j.polymer.2024.127379 http://dx.doi.org/10.1016/j.polymer.2024.127379
Department of Mechanical Engineering , Aarupadai Veedu Institute of Technology , Vinayaka Mission's Research Foundation , Chennai , India ; Prabhu , L .; Selvakumar, V .; DepartmentEngineering, University of Technology & Applied Sciences, Nizwa, Sultanate of Oman; Anderson, A.; School of Mechanical Engineering, Sathyabama Institute of Science and Technology, India; Dhavamani, C.; Department of Aeronautical Engineering, Mahendra Engineering College, Namakkal, India. Influence of CNT Fillers on the Thermal, Mechanical and Shape Memory Properties of TPI Shape Memory Polymer Composites. DJNB , 2023 , 18 ( 1 ), 299 - 305 . doi: 10.15251/djnb.2023.181.299 http://dx.doi.org/10.15251/djnb.2023.181.299
Zhang C. ; Li L. ; Xin Y. H. ; You J. Q. ; Zhang J. ; Fu W. L. ; Wang N. Development of trans -1,4-polyisoprene shape-memory polymer composites reinforced with carbon nanotubes modified by polydopamine . Polymers , 2021 , 14 ( 1 ), 110 . doi: 10.3390/polym14010110 http://dx.doi.org/10.3390/polym14010110
Xia L. ; Wang Q. ; Meng J. F. ; Ma Z. G. ; Zhao P. Thermal and electro-induced shape-memory Eucommia ulmoides gum composites filled with carbon nanotubes . Polym. Adv. Technol. , 2021 , 32 ( 8 ), 3297 - 3308 . doi: 10.1002/pat.5341 http://dx.doi.org/10.1002/pat.5341
Li L. ; Luo S. ; Li D. H. ; Wang N. ; Kang H. L. ; Fang Q. H. Thermal and electrical dual-triggered shape memory Eucommia ulmoides gum derived from renewable resources . Polym. Compos. , 2022 , 43 ( 1 ), 378 - 388 . doi: 10.1002/pc.26382 http://dx.doi.org/10.1002/pc.26382
Zhao Y. Q. ; Liu D. K. ; Huang P. K. ; Zheng H. ; Su Y. Z. ; Zhang L. H. ; Zheng W. G. ; Xu L. Q. Fabrication and characterization of Trans-1 , 4 -polyisoprene/carbon nanotubes nanocomposites with thermo- and electro-active shape memory effects . J. Appl. Polym. Sci., 2023, 140 ( 30 ), e 54093 . doi: 10.1002/app.54093 http://dx.doi.org/10.1002/app.54093
Xia L. ; Gao H. ; Bi W. N. ; Fu W. X. ; Qiu G. X. ; Xin Z. X. Shape memory behavior of carbon black-reinforced trans -1,4-polyisoprene and low-density polyethylene composites . Polymers , 2019 , 11 ( 5 ), 807 . doi: 10.3390/polym11050807 http://dx.doi.org/10.3390/polym11050807
Xia L. ; Liu X. ; Wang Q. ; Ma Z. ; Huang Z. Study of electro-induced shape-memory Eucommia ulmoides rubber composites reinforced with conductive carbon blacks . Express Polym. Lett. , 2021 , 15 ( 7 ), 600 - 611 . doi: 10.3144/expresspolymlett.2021.51 http://dx.doi.org/10.3144/expresspolymlett.2021.51
Wang Z. Q. ; Liu J. B. ; Guo J. M. ; Sun X. Y. ; Xu L. D. The study of thermal, mechanical and shape memory properties of chopped carbon fiber-reinforced TPI shape memory polymer composites . Polymers , 2017 , 9 ( 11 ), 594 . doi: 10.3390/polym9110594 http://dx.doi.org/10.3390/polym9110594
Guo J. M. ; Wang Z. Q. ; Tong L. Y. ; Liang W. Y. Effects of short carbon fibres and nanoparticles on mechanical, thermal and shape memory properties of SMP hybrid nanocomposites . Compos. Part B Eng. , 2016 , 90 , 152 - 159 . doi: 10.1016/j.compositesb.2015.12.010 http://dx.doi.org/10.1016/j.compositesb.2015.12.010
Liu J. B. ; Wang Z. Q. ; Li S. F. ; Sun X. Y. A nove l graphene oxide/ trans -1,4-polyisoprene (GO/TPI) shape memory polymer nanocomposite and its multifunctional properties . Nanotechnology , 2019 , 30 ( 25 ), 255706 . doi: 10.1088/1361-6528/ab0868 http://dx.doi.org/10.1088/1361-6528/ab0868
姚薇 , 徐福勇 , 陈利 , 赵志超 , 黄宝琛 . 反式-1,4-聚异戊二烯/乙炔黑复合材料的形状记忆性能 . 青岛科技大学学报(自然科学版) , 2010 , 31 ( 1 ), 67 - 70, 102 . doi: 10.3969/j.issn.1672-6987.2010.01.016 http://dx.doi.org/10.3969/j.issn.1672-6987.2010.01.016
She D. ; Dong J. E. ; Zhang J. H. ; Liu L. L. ; Sun Q. Q. ; Geng Z. C. ; Peng P. Development of black and biodegradable biochar/gutta percha composite films with high stretchability and barrier properties . Compos. Sci. Technol. , 2019 , 175 , 1 - 5 . doi: 10.1016/j.compscitech.2019.03.007 http://dx.doi.org/10.1016/j.compscitech.2019.03.007
Liu J. B. ; Min B. Z. ; Wang Z. Q. ; Teng J. X. ; Sun X. Y. ; Li S. F. ; Li S. Z. Influence of functionalized core-shell structure on the thermodynamic and shape memory properties of nanocomposites . Nanoscale , 2020 , 12 ( 5 ), 3205 - 3219 . doi: 10.1039/c9nr09029k http://dx.doi.org/10.1039/c9nr09029k
Zhang T. ; Jia Y. H. ; Shen R. B. ; Zhao W. L. ; Liang Y. R. The shape memory performance of the dynamically vulcanized TPV nanocomposites of trans-isoprene/low-density polyethylene and organoclay . J. Polym. Res. , 2024 , 31 ( 2 ), 45 . doi: 10.1007/s10965-024-03893-w http://dx.doi.org/10.1007/s10965-024-03893-w
张闯 , 张静 , 王娜 , 李龙 . 聚多巴胺改性纳米二氧化硅增强反式-1,4-聚异戊二烯形状记忆聚合物的制备与性能 . 复合材料学报 , 2023 , 40 ( 5 ), 2772 - 2782 . doi: 10.13801/j.cnki.fhclxb.20220616.002 http://dx.doi.org/10.13801/j.cnki.fhclxb.20220616.002
Lin T. F. ; Li S. Y. ; Ke J. H. ; Zheng Y. Y. ; Yu Y. Unique shape memory elastomer associated with reversible sacrificial hydrogen bonds: tough and flexible when below its T g . Adv. Eng. Mater. , 2018 , 20 ( 7 ), 1800051 . doi: 10.1002/adem.201800051 http://dx.doi.org/10.1002/adem.201800051
Liu J. ; Liu J. ; Wang S. ; Huang J. ; Wu S. W. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability . J. Mater. Chem. A , 2017 , 5 ( 48 ), 25660 - 25671 . doi: 10.1039/c7ta08255j http://dx.doi.org/10.1039/c7ta08255j
Liu J. ; Wang S. ; Tang Z. H. ; Huang J. ; Guo B. C. ; Huang G. S. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1 , 4 -polyisoprene toward a high-performance elastomer . Macromolecules, 2016, 49 ( 22 ), 8593 - 8604 . doi: 10.1021/acs.macromol.6b01576 http://dx.doi.org/10.1021/acs.macromol.6b01576
Liu J. ; Tang Z. H. ; Huang J. ; Guo B. C. ; Huang G. S. Promoted strain-induced-crystallization in synthetic cis -1,4-polyisoprene via constructing sacrificial bonds . Polymer , 2016 , 97 , 580 - 588 . doi: 10.1016/j.polymer.2016.06.001 http://dx.doi.org/10.1016/j.polymer.2016.06.001
Kang H. L. ; Xu M. Z. ; Wang H. Y. ; Li L. ; Li J. X. ; Fang Q. H. ; Zhang J. C. Heat-responsive shape memory Eucommia ulmoides gum composites reinforced by zinc dimethacrylate . J. Appl. Polym. Sci. , 2020 , 137 ( 38 ), 49133 . doi: 10.1002/app.49133 http://dx.doi.org/10.1002/app.49133
Wang Y. ; Pei X. Q. ; Xia L. ; Zhang Z. C. ; Wang Q. H. ; Wang T. M. Bio-based Eucommia ulmoides gum/low density polyethylene shape memory composites reinforced by zinc methacrylate . Polym. Int. , 2021 , 70 ( 12 ), 1659 - 1667 . doi: 10.1002/pi.6262 http://dx.doi.org/10.1002/pi.6262
Xia L. ; Meng J. F. ; Ma Y. ; Zhao P. Facile fabrication of eucommia rubber composites with high shape memory performance . Polymers , 2021 , 13 ( 20 ), 3479 . doi: 10.3390/polym13203479 http://dx.doi.org/10.3390/polym13203479
Huang J. R. ; Fan J. F. ; Cao L. M. ; Xu C. H. ; Chen Y. K. A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect . Chem. Eng. J. , 2020 , 385 , 123828 . doi: 10.1016/j.cej.2019.123828 http://dx.doi.org/10.1016/j.cej.2019.123828
Huang J. R. ; Fan J. F. ; Yin S. H. ; Chen Y. K. Design of remotely, locally triggered shape-memory materials based on bicontinuous polylactide/epoxidized natural rubber thermoplastic vulcanizates via regulating the distribution of ferroferric oxide . Compos. Sci. Technol. , 2019 , 182 , 107732 . doi: 10.1016/j.compscitech.2019.107732 http://dx.doi.org/10.1016/j.compscitech.2019.107732
韩雨霏 , 李旭 , 康海澜 , 王娜 , 方庆红 , 李龙 . 磁、热双重响应的Fe 3 O 4 /EUG形状记忆复合材料的制备及性能 . 精细化工 , 2022 , 39 ( 12 ), 2424 - 2430 .
0
浏览量
165
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构