浏览全部资源
扫码关注微信
1.山东大学 化学与化工学院前沿化学研究院、山东省物质创制与能量转换科学重点实验室、 物质创制与能量转换科学研究中心 青岛 266237
2.西安石油大学 新能源学院 西安 710065
3.华南理工大学 发光材料与器件国家重点实验室 广州 510641
[ "阚媛媛,女,1988年生. 2011年毕业于山东科技大学材料学院获得学士学位;2016年于华南理工大学获得博士学位;2017~2020年赴美国华盛顿大学进行研究工作. 2021年加入山东大学李玉良院士领军的物质创制与能量转换科学研究中心团队,现任副研究员. 研究方向聚焦于新型有机(小分子)太阳电池活性层、界面层材料设计合成与器件机理研究." ]
[ "孙延娜,女,1992年生,山东大学化学与化工学院副教授. 2015年毕业于中国海洋大学高分子材料与工程专业,获得学士学位. 2020年于南开大学获有机化学专业博士学位,师从陈永胜教授,随后加入山东大学,李玉良院士物质创制与能量转换科学研究中心团队. 研究方向聚焦于柔性透明电极;高效有机太阳能电池;柔性器件;石墨炔材料的设计合成及应用." ]
收稿日期:2024-12-04,
录用日期:2025-01-25,
网络出版日期:2025-03-06,
移动端阅览
孙凌亚, 刘世钊, 张旭, 马笑, 高欢欢, 阚媛媛, 孙延娜, 高珂. 超薄柔性有机太阳能电池的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.24287
Sun, L. Y.; Liu, S. Z.; Zhang, X.; Ma, X.; Gao, H. H.; Kan, Y. Y.; Sun, Y. N.; Gao, K. Research progress of ultrathin and flexible organic solar cells. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.24287
孙凌亚, 刘世钊, 张旭, 马笑, 高欢欢, 阚媛媛, 孙延娜, 高珂. 超薄柔性有机太阳能电池的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.24287 DOI: CSTR: 32057.14.GFZXB.2025.7347.
Sun, L. Y.; Liu, S. Z.; Zhang, X.; Ma, X.; Gao, H. H.; Kan, Y. Y.; Sun, Y. N.; Gao, K. Research progress of ultrathin and flexible organic solar cells. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.24287 DOI: CSTR: 32057.14.GFZXB.2025.7347.
超薄柔性有机太阳能电池(ultrathin and flexible organic solar cells
UF-OSCs)凭借其卓越的柔韧性及高功率重量比,在可穿戴电子设备、柔性显示技术等领域展现出巨大的应用潜力. 然而,UF-OSCs的光电转换效率(PCE)与刚性器件相比,仍存在较大的提升空间. 为了提高UF-OSCs的性能,国内外研究人员从器件的材料及结构等方面展开了深入研究. 其中,超薄柔性透明电极(UFTE)作为器件组成的关键部分,其性能对电池的整体效率和稳定性有着直接影响. 本文以UFTE为切入点,结合界面层和器件结构工程等多种策略,对UF-OSCs的最新研究进展进行了详细分析. 此外,还简要介绍了大面积UF-OSCs的潜在应用. 最后,提出了UF-OSCs进一步发展所面临的挑战,并展望了其在柔性电源领域的应用前景.
Ultrathin and flexible organic solar cells (UF-OSCs) demonstrate great potential in applications such as wearable electronics and flexible display technology due to their flexibility and a high power-to-weight ratio. However
the power conversion efficiencies (PCEs) of UF-OSCs still lag behind those of their corresponding rigid counterparts
which remains the most critical factor hindering the commercialization process of UF-OSCs. In order to enhance the performance of UF-OSCs
researchers worldwide have carried out in-depth research on the materials and device structures. Ultrathin and flexible transparent electrode (UFTE) is a key component of the device
and its performance has a direct impact on the overall efficiency and stability of the device. This review takes UFTE as the starting point and combines various strategies such as interface layer and device structure engineering to conduct a detailed analysis of the latest research progress of UF-OSCs. Moreover
the potential applications of large-area UF-OSCs are briefly introduced. Finally
the challenges faced by the further development of UF-OSCs are proposed
and its application prospects in the field of flexible power sources are prospected.
Heeger, A. J. 25th anniversary article: Bulk heterojunction solar cells: understanding the mechanism of operation . Adv. Mater. , 2014 , 26 ( 1 ), 10 - 28 . doi: 10.1002/adma.201470248 http://dx.doi.org/10.1002/adma.201470248
Li Y. W. ; Xu G. Y. ; Cui C. H. ; Li Y. F. Flexible and semitransparent organic solar cells . Adv. Energy Mater. , 2018 , 8 ( 7 ), 1701791 . doi: 10.1002/aenm.201701791 http://dx.doi.org/10.1002/aenm.201701791
Liu C. H. ; Xiao C. Y. ; Xie C. C. ; Li W. W. Flexible organic solar cells: materials, large-area fabrication techniques and potential applications . Nano Energy , 2021 , 89 , 106399 . doi: 10.1016/j.nanoen.2021.106399 http://dx.doi.org/10.1016/j.nanoen.2021.106399
Zhang Z. ; Yuan S. H. ; Chen T. Q. ; Wang J. ; Yi Y. Q. Q. ; Zhao B. ; Li M. M. ; Yao Z. Y. ; Li C. X. ; Wan X. J. ; Long G. K. ; Kan B. ; Chen Y. S. Rational design of flexible-linked 3D dimeric acceptors for stable organic solar cells demonstrating 19.2% efficiency . Energy Environ. Sci. , 2024 , 17 ( 15 ), 5719 - 5729 . doi: 10.1039/D4EE01943A http://dx.doi.org/10.1039/D4EE01943A
Song W. ; Chen Z. Y. ; Lin C. Q. ; Zhang P. L. ; Sun D. H. ; Zhang W. F. ; Ge J. F. ; Xie L. ; Peng R. X. ; Yang D. B. ; Liu Q. ; Xu Y. F. ; Ge Z. Y. An in situ crosslinked matrix enables efficient and mechanically robust organic solar cells with frozen nano-morphology and superior deformability . Energy Environ. Sci. , 2024 , 17 ( 19 ), 7318 - 7329 . doi: 10.1039/d4ee02724h http://dx.doi.org/10.1039/d4ee02724h
Hu Y. Y. ; Wang J. Y. ; Yan C. Q. ; Cheng P. The multifaceted potential applications of organic photovoltaics . Nat. Rev. Mater. , 2022 , 7 ( 11 ), 836 - 838 . doi: 10.1038/s41578-022-00497-y http://dx.doi.org/10.1038/s41578-022-00497-y
Qian D. P. ; Zheng Z. L. ; Yao H. F. ; Tress W. ; Hopper T. R. ; Chen S. L. ; Li S. S. ; Liu J. ; Chen S. S. ; Zhang J. B. ; Liu X. K. ; Gao B. W. ; Ouyang L. Q. ; Jin Y. Z. ; Pozina G. ; Buyanova I. A. ; Chen W. M. ; Inganäs O. ; Coropceanu V. ; Bredas J. L. ; Yan H. ; Hou J. H. ; Zhang F. L. ; Bakulin A. A. ; Gao F. Design rules for minimizing voltage losses in high-efficiency organic solar cells . Nat. Mater. , 2018 , 17 ( 8 ), 703 - 709 . doi: 10.1038/s41563-018-0128-z http://dx.doi.org/10.1038/s41563-018-0128-z
Zhang J. Q. ; Tan H. S. ; Guo X. G. ; Facchetti A. ; Yan H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors . Nat. Energy , 2018 , 3 ( 9 ), 720 - 731 . doi: 10.1038/s41560-018-0181-5 http://dx.doi.org/10.1038/s41560-018-0181-5
Liu S. ; Yuan J. ; Deng W. Y. ; Luo M. ; Xie Y. ; Liang Q. B. ; Zou Y. P. ; He Z. C. ; Wu H. B. ; Cao Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder . Nat. Photon. , 2020 , 14 ( 5 ), 300 - 305 . doi: 10.1038/s41566-019-0573-5 http://dx.doi.org/10.1038/s41566-019-0573-5
Wan X. J. ; Li C. X. ; Zhang M. T. ; Chen Y. S. Acceptor-donor-acceptor type molecules for high performance organic photovoltaics-chemistry and mechanism . Chem. Soc. Rev. , 2020 , 49 ( 9 ), 2828 - 2842 . doi: 10.1039/d0cs00084a http://dx.doi.org/10.1039/d0cs00084a
Cui M. Q. ; Li D. ; Du X. Y. ; Li N. ; Rong Q. K. ; Li N. ; Shui L. L. ; Zhou G. F. ; Wang X. H. ; Brabec C. J. ; Nian L. A cost-effective, aqueous-solution-processed cathode interlayer based on organosilica nanodots for highly efficient and stable organic solar cells . Adv. Mater. , 2020 , 32 ( 38 ), 2002973 . doi: 10.1002/adma.202070284 http://dx.doi.org/10.1002/adma.202070284
Meng Y. ; Wu J. N. ; Guo X. ; Su W. Y. ; Zhu L. ; Fang J. ; Zhang Z. G. ; Liu F. ; Zhang M. J. ; Russell T. P. ; Li Y. F. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage . Sci. China Chem. , 2019 , 62 ( 7 ), 845 - 850 . doi: 10.1007/s11426-019-9466-6 http://dx.doi.org/10.1007/s11426-019-9466-6
Li G. ; Zhu R. ; Yang Y. Polymer solar cells . Nat. Photon. , 2012 , 6 ( 3 ), 153 - 161 . doi: 10.1038/nphoton.2012.11 http://dx.doi.org/10.1038/nphoton.2012.11
Meng X. C. ; Zhang L. ; Xie Y. P. ; Hu X. T. ; Xing Z. ; Huang Z. Q. ; Liu C. ; Tan L. C. ; Zhou W. H. ; Sun Y. M. ; Ma W. ; Chen Y. W. A general approach for lab-to-manufacturing translation on flexible organic solar cells . Adv. Mater. , 2019 , 31 ( 41 ), 1903649 . doi: 10.1002/adma.201970294 http://dx.doi.org/10.1002/adma.201970294
Dou Y. J. ; Luo S. W. ; Zhu P. C. ; Zhu L. X. ; Zhang G. Y. ; Bao C. X. ; Yan H. ; Zhu J. ; Chen S. S. Distributions and evolution of trap states in non-fullerene organic solar cells . Joule , 2025 , 9 ( 1 ), 101774 . doi: 10.1016/j.joule.2024.10.006 http://dx.doi.org/10.1016/j.joule.2024.10.006
Zhang R. ; Chen H. Y. ; Wang T. H. ; Kobera L. ; He L. L. ; Huang Y. T. ; Ding J. Y. ; Zhang B. ; Khasbaatar A. ; Nanayakkara S. ; Zheng J. L. ; Chen W. J. ; Diao Y. ; Abbrent S. ; Brus J. ; Coffey A. H. ; Zhu C. H. ; Liu H. ; Lu X. H. ; Jiang Q. ; Coropceanu V. ; Brédas J. L. ; Li Y. F. ; Li Y. W. ; Gao F. Equally high efficiencies of organic solar cells processed from different solvents reveal key factors for morphology control . Nat. Energy , 2024 , 10 ( 1 ), 124 - 134 . doi: 10.1038/s41560-024-01678-5 http://dx.doi.org/10.1038/s41560-024-01678-5
Song J. L. ; Li C. ; Ma H. S. ; Han B. Y. ; Wang Q. Q. ; Wang X. C. ; Wei D. H. ; Bu L. J. ; Yang R. Q. ; Yan H. ; Sun Y. M. Optimizing double-fibril network morphology via solid additive strategy enables binary all-polymer solar cells with 19.50% efficiency . Adv. Mater. , 2024 , 36 ( 36 ), 2406922 .
Weng W. ; Chen P. N. ; He S. S. ; Sun X. M. ; Peng H. S. Smart electronic textiles . Angew. Chem. Int. Ed. , 2016 , 55 ( 21 ), 6140 - 6169 . doi: 10.1002/anie.201507333 http://dx.doi.org/10.1002/anie.201507333
Ma R. ; Feng J. ; Yin D. ; Sun H. B. Highly efficient and mechanically robust stretchable polymer solar cells with random buckling . Org. Electron. , 2017 , 43 , 77 - 81 . doi: 10.1016/j.orgel.2016.12.062 http://dx.doi.org/10.1016/j.orgel.2016.12.062
Wang Z. Y. ; Bo Y. W. ; Bai P. J. ; Zhang S. C. ; Li G. H. ; Wan X. J. ; Liu Y. S. ; Ma R. J. ; Chen Y. S. Self-sustaining personal all-day thermoregulatory clothing using only sunlight . Science , 2023 , 382 ( 6676 ), 1291 - 1296 . doi: 10.1126/science.adj3654 http://dx.doi.org/10.1126/science.adj3654
Li Y. ; Mei L. ; Ge Z. W. ; Liu C. H. ; Song J. L. ; Man Y. H. ; Gao J. X. ; Zhang J. Q. ; Tang Z. ; Chen X. K. ; Sun Y. M. Conjugation-broken dimer acceptors enable high-efficiency, stable, and flexibility-robust organic solar cells . Adv. Mater. , 2024 , 36 ( 35 ), 2403890 . doi: 10.1002/adma.202403890 http://dx.doi.org/10.1002/adma.202403890
Huang S. L. ; Qian C. ; Liu X. T. ; Zhang L. P. ; Meng F. Y. ; Yan Z. ; Zhou Y. N. ; Du J. L. ; Ding B. ; Shi J. H. ; Han A. J. ; Zhao W. J. ; Yu J. ; Song X. ; Liu Z. X. ; Liu W. Z. A review on flexible solar cells . Sci. China Mater. , 2024 , 67 ( 9 ), 2717 - 2736 . doi: 10.1007/s40843-023-2843-8 http://dx.doi.org/10.1007/s40843-023-2843-8
Fukuda K. ; Yu K. ; Someya T. The future of flexible organic solar cells . Adv. Energy Mater. , 2020 , 10 ( 25 ), 2000765 . doi: 10.1002/aenm.202000765 http://dx.doi.org/10.1002/aenm.202000765
Xie C. C. ; Jiang X. D. ; Zhu Q. L. ; Wang D. ; Xiao C. Y. ; Liu C. H. ; Ma W. ; Chen Q. M. ; Li W. W. Mechanical robust flexible single-component organic solar cells . Small Methods , 2021 , 5 ( 9 ), 2100481 . doi: 10.1002/smtd.202100481 http://dx.doi.org/10.1002/smtd.202100481
Rich S. I. ; Lee S. ; Fukuda K. ; Someya T. Developing the nondevelopable: creating curved-surface electronics from nonstretchable devices . Adv. Mater. , 2022 , 34 ( 22 ), 2106683 . doi: 10.1002/adma.202270164 http://dx.doi.org/10.1002/adma.202270164
Jia C. M. ; Li Z. H. ; Wan Z. ; Jiang Z. ; Xue J. Y. ; Shi J. S. ; Wang F. W. ; Zhou X. Y. ; Liu C. ; Li C. ; Li Z. Ultra-thin perovskite solar cells with high specific power density based on colorless polyimide substrates . Nano Energy , 2024 , 131 , 110259 . doi: 10.1016/j.nanoen.2024.110259 http://dx.doi.org/10.1016/j.nanoen.2024.110259
Li H. J. ; Le J. L. ; Tan H. ; Hu L. ; Li X. ; Zhang K. ; Zeng S. M. ; Liu Q. J. ; Zhang M. ; Shi L. F. ; Cai Z. R. ; Liu S. Q. ; Li H. X. ; Ye L. ; Hu X. T. ; Chen Y. W. Synergistic multimodal energy dissipation enhances certified efficiency of flexible organic photovoltaics beyond 19 %. Adv. Mater. , 2025 , 37 ( 5 ), 2411989 . doi: 10.1002/adma.202411989 http://dx.doi.org/10.1002/adma.202411989
Xiao Z. ; Liu J. ; Chen X. ; Suo Z. C. ; Cao X. J. ; Xu N. ; Yao Z. Y. ; Li C. X. ; Wan X. J. ; Chen Y. S. Ultra-flexible organic solar cells based on eco-friendly cellulose substrate with efficiency approaching 19 %. J. Mater. Chem. A , 2025 , 13 ( 3 ), 2301 - 2308 . doi: 10.1039/d4ta07622b http://dx.doi.org/10.1039/d4ta07622b
Sun Y. N. ; Liu T. ; Kan Y. Y. ; Gao K. ; Tang B. ; Li Y. L. Flexible organic solar cells: progress and challenges . Small Sci. , 2021 , 1 ( 5 ), 2100001 . doi: 10.1002/smsc.202100001 http://dx.doi.org/10.1002/smsc.202100001
Li S. T. ; Li Z. X. ; Wan X. J. ; Chen Y. S. Recent progress in flexible organic solar cells . eScience , 2023 , 3 ( 1 ), 100085 . doi: 10.1016/j.esci.2022.10.010 http://dx.doi.org/10.1016/j.esci.2022.10.010
Morales-Masis M. ; De Wolf S. ; Woods-Robinson R. ; Ager J. W. ; Ballif C. Transparent electrodes for efficient optoelectronics . Adv. Electron. Mater. , 2017 , 3 ( 5 ), 1600529 . doi: 10.1002/aelm.201600529 http://dx.doi.org/10.1002/aelm.201600529
Wu X. L. ; Zheng X. J. ; Chen T. Y. ; Zhang S. ; Zhou Y. ; Wang M. T. ; Chen T. J. ; Wang Y. M. ; Bi Z. Z. ; Fu W. F. ; Du M. ; Ma W. ; Zuo L. J. ; Chen H. Z. High-performance intrinsically stretchable organic photovoltaics enabled by robust silver nanowires/S-PH1000 hybrid transparent electrodes . Adv. Mater. , 2024 , 36 ( 40 ), 2406879 . doi: 10.1002/adma.202406879 http://dx.doi.org/10.1002/adma.202406879
Jinno H. ; Fukuda K. ; Xu X. M. ; Park S. ; Suzuki Y. ; Koizumi M. ; Yokota T. ; Osaka I. ; Takimiya K. ; Someya T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications . Nat. Energy , 2017 , 2 ( 10 ), 780 - 785 . doi: 10.1038/s41560-017-0001-3 http://dx.doi.org/10.1038/s41560-017-0001-3
Sun L. L. ; Wang J. C. ; Matsui H. ; Lee S. ; Wang W. Q. ; Guo S. Y. ; Chen H. T. ; Fang K. ; Ito Y. ; Inoue D. ; Hashizume D. ; Mori K. ; Takakuwa M. ; Lee S. ; Zhou Y. H. ; Yokota T. ; Fukuda K. ; Someya T. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices . Sci. Adv. , 2024 , 10 ( 15 ), eadk 9460 . doi: 10.1126/sciadv.adk9460 http://dx.doi.org/10.1126/sciadv.adk9460
Qin F. ; Wang W. ; Sun L. L. ; Jiang X. S. ; Hu L. ; Xiong S. X. ; Liu T. F. ; Dong X. Y. ; Li J. ; Jiang Y. Y. ; Hou J. H. ; Fukuda K. ; Someya T. ; Zhou Y. H. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells . Nat. Commun. , 2020 , 11 ( 1 ), 4508 . doi: 10.1038/s41467-020-18373-0 http://dx.doi.org/10.1038/s41467-020-18373-0
Zheng X. J. ; Zuo L. J. ; Yan K. R. ; Shan S. Q. ; Chen T. Y. ; Ding G. Y. ; Xu B. W. ; Yang X. ; Hou J. H. ; Shi M. M. ; Chen H. Z. Versatile organic photovoltaics with a power density of nearly 40 W·g -1 . Energy Environ. Sci. , 2023 , 16 ( 5 ), 2284 - 2294 . doi: 10.1039/d3ee00087g http://dx.doi.org/10.1039/d3ee00087g
Jiang Z. ; Fukuda K. ; Xu X. M. ; Park S. ; Inoue D. ; Jin H. ; Saito M. ; Osaka I. ; Takimiya K. ; Someya T. Reverse-offset printed ultrathin Ag mesh for robust conformal transparent electrodes for high-performance organic photovoltaics . Adv. Mater. , 2018 , 30 ( 26 ), 1707526 . doi: 10.1002/adma.201870190 http://dx.doi.org/10.1002/adma.201870190
Savagatrup S. ; Printz A. D. ; O'Connor T. F. ; Zaretski A. V. ; Rodriquez D. ; Sawyer E. J. ; Rajan K. M. ; Acosta R. I. ; Root S. E. ; Lipomi D. J. Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants . Energy Environ. Sci. , 2015 , 8 ( 1 ), 55 - 80 . doi: 10.1039/c4ee02657h http://dx.doi.org/10.1039/c4ee02657h
Bishnoi S. ; Datt R. ; Arya S. ; Gupta S. ; Gupta R. ; Tsoi W. C. ; Sharma S. N. ; Patole S. P. ; Gupta V. Engineered cathode buffer layers for highly efficient organic solar cells: a review . Adv. Mater. Interfaces , 2022 , 9 ( 19 ), 2101693 . doi: 10.1002/admi.202270109 http://dx.doi.org/10.1002/admi.202270109
Li M. P. ; He F. Organic solar cells developments: what's next? Next Energy , 2024 , 2 , 100085 . doi: 10.1016/j.nxener.2023.100085 http://dx.doi.org/10.1016/j.nxener.2023.100085
Wang F. F. ; Liu T. X. ; Cui Z. W. ; Wang L. Y. ; Dou Y. J. ; Shi X. Y. ; Luo S. W. ; Hu X. D. ; Ren Z. J. ; Liu Y. Y. ; Zhao Y. ; Chen S. S. Simplified p-i-n perovskite solar cells with a multifunctional polyfullerene electron transporter . Chinese J. Polym. Sci. , 2024 , 42 ( 8 ), 1060 - 1066 . doi: 10.1007/s10118-024-3156-y http://dx.doi.org/10.1007/s10118-024-3156-y
Gao Y. Y. ; Zhang K. Y. ; Wang S. M. ; Tong H. ; Liu J. Highly red emissive conjugated homopolymers based on double B←N bridged bipyridine unit . Chinese J. Polym. Sci. , 2024 , 42 ( 8 ), 1029 - 1037 . doi: 10.1007/s10118-024-3123-7 http://dx.doi.org/10.1007/s10118-024-3123-7
Zheng Z. ; Wang J. Q. ; Bi P. Q. ; Ren J. Z. ; Wang Y. F. ; Yang Y. ; Liu X. Y. ; Zhang S. Q. ; Hou J. H. Tandem organic solar cell with 20.2% efficiency . Joule , 2022 , 6 ( 1 ), 171 - 184 . doi: 10.1016/j.joule.2021.12.017 http://dx.doi.org/10.1016/j.joule.2021.12.017
Cui Y. ; Yao H. F. ; Zhang J. Q. ; Zhang T. ; Wang Y. M. ; Hong L. ; Xian K. H. ; Xu B. W. ; Zhang S. Q. ; Peng J. ; Wei Z. X. ; Gao F. ; Hou J. H. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages . Nat. Commun. , 2019 , 10 ( 1 ), 2515 . doi: 10.1038/s41467-019-10351-5 http://dx.doi.org/10.1038/s41467-019-10351-5
Lin Y. Z. ; Wang J. Y. ; Zhang Z. G. ; Bai H. T. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 , 27 ( 7 ), 1170 - 1174 . doi: 10.1002/adma.201404317 http://dx.doi.org/10.1002/adma.201404317
Yan C. Q. ; Barlow S. ; Wang Z. H. ; Yan H. ; Jen A. K. Y. ; Marder S. R. ; Zhan X. W. Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 , 3 , 18003 . doi: 10.1038/natrevmats.2018.3 http://dx.doi.org/10.1038/natrevmats.2018.3
Yuan J. ; Zhang Y. Q. ; Zhou L. Y. ; Zhang G. C. ; Yip H. L. ; Lau T. K. ; Lu X. H. ; Zhu C. ; Peng H. J. ; Johnson P. A. ; Leclerc M. ; Cao Y. ; Ulanski J. ; Li Y. F. ; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 , 3 ( 4 ), 1140 - 1151 . doi: 10.1016/j.joule.2019.01.004 http://dx.doi.org/10.1016/j.joule.2019.01.004
Jiang Y. Y. ; Sun S. M. ; Xu R. J. ; Liu F. ; Miao X. D. ; Ran G. L. ; Liu K. R. ; Yi Y. P. ; Zhang W. K. ; Zhu X. Z. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells . Nat. Energy , 2024 , 9 ( 8 ), 975 - 986 . doi: 10.1038/s41560-024-01557-z http://dx.doi.org/10.1038/s41560-024-01557-z
Chen Z. Y. ; Ge J. F. ; Song W. ; Tong X. Y. ; Liu H. ; Yu X. L. ; Li J. ; Shi J. Y. ; Xie L. ; Han C. C. ; Liu Q. ; Ge Z. Y. 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement . Adv. Mater. , 2024 , 36 ( 33 ), 2406690 . doi: 10.1002/adma.202406690 http://dx.doi.org/10.1002/adma.202406690
Chen C. ; Wang L. ; Xia W. Y. ; Qiu K. ; Guo C. H. ; Gan Z. R. ; Zhou J. ; Sun Y. D. ; Liu D. ; Li W. ; Wang T. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20 %. Nat. Commun. , 2024 , 15 ( 1 ), 6865 . doi: 10.1038/s41467-024-51359-w http://dx.doi.org/10.1038/s41467-024-51359-w
Wei N. ; Chen J. N. ; Cheng Y. T. ; Bian Z. Q. ; Liu W. L. ; Song H. M. ; Guo Y. W. ; Zhang W. K. ; Liu Y. H. ; Lu H. ; Zhou J. J. ; Bo Z. S. Constructing multiscale fibrous morphology to achieve 20 % efficiency organic solar cells by mixing high and low molecular weight D 18 . Adv. Mater., 2024, 36 ( 41 ), 2408934 . doi: 10.1002/adma.202408934 http://dx.doi.org/10.1002/adma.202408934
Lu H. ; Li D. W. ; Liu W. L. ; Ran G. L. ; Wu H. B. ; Wei N. ; Tang Z. ; Liu Y. H. ; Zhang W. K. ; Bo Z. S. Designing A-D-A type fused-ring electron acceptors with a bulky 3D substituent at the central donor core to minimize non-radiative losses and enhance organic solar cell efficiency . Angew. Chem. Int. Ed. , 2024 , 63 ( 33 ), e 202407007 . doi: 10.1002/anie.202407007 http://dx.doi.org/10.1002/anie.202407007
Li C. ; Zhou J. D. ; Song J. L. ; Xu J. Q. ; Zhang H. T. ; Zhang X. N. ; Guo J. ; Zhu L. ; Wei D. H. ; Han G. C. ; Min J. ; Zhang Y. ; Xie Z. Q. ; Yi Y. P. ; Yan H. ; Gao F. ; Liu F. ; Sun Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells . Nat. Energy , 2021 , 6 ( 6 ), 605 - 613 . doi: 10.1038/s41560-021-00820-x http://dx.doi.org/10.1038/s41560-021-00820-x
Luo S. W. ; Li C. ; Zhang J. Q. ; Zou X. H. ; Zhao H. ; Ding K. ; Huang H. ; Song J. L. ; Yi J. C. ; Yu H. ; Wong K. S. ; Zhang G. Y. ; Ade H. ; Ma W. ; Hu H. W. ; Sun Y. M. ; Yan H. Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents . Nat. Commun. , 2023 , 14 , 6964 . doi: 10.1038/s41467-023-41978-0 http://dx.doi.org/10.1038/s41467-023-41978-0
Zhu L. ; Zhang M. ; Xu J. Q. ; Li C. ; Yan J. ; Zhou G. Q. ; Zhong W. K. ; Hao T. Y. ; Song J. L. ; Xue X. N. ; Zhou Z. C. ; Zeng R. ; Zhu H. M. ; Chen C. C. ; MacKenzie R. C. I. ; Zou Y. C. ; Nelson J. ; Zhang Y. M. ; Sun Y. M. ; Liu F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology . Nat. Mater. , 2022 , 21 ( 6 ), 656 - 663 . doi: 10.1038/s41563-022-01244-y http://dx.doi.org/10.1038/s41563-022-01244-y
Du C. H. ; Xu Y. H. ; Li H. ; Wu Z. X. ; Yang H. J. ; Liu X. M. ; Lu B. Y. ; Nie G. M. ; Zhang G. Tough hydrogen bonding crosslinked poly(3-fluorothiophene) network via electrosynthesis for high-performance electrochromic supercapacitors . Chinese J. Polym. Sci. , 2024 , 42 ( 11 ), 1749 - 1757 . doi: 10.1007/s10118-024-3175-8 http://dx.doi.org/10.1007/s10118-024-3175-8
Song W. ; Yu K. B. ; Zhou E. J. ; Xie L. ; Hong L. ; Ge J. F. ; Zhang J. S. ; Zhang X. L. ; Peng R. X. ; Ge Z. Y. Crumple durable ultraflexible organic solar cells with an excellent power-per-weight performance . Adv. Funct. Mater. , 2021 , 31 ( 30 ), 2102694 . doi: 10.1002/adfm.202102694 http://dx.doi.org/10.1002/adfm.202102694
Kaltenbrunner M. ; White M. S. ; Głowacki E. D. ; Sekitani T. ; Someya T. ; Sariciftci N. S. ; Bauer S. Ultrathin and lightweight organic solar cells with high flexibility . Nat. Commun. , 2012 , 3 , 770 . doi: 10.1038/ncomms1772 http://dx.doi.org/10.1038/ncomms1772
Park S. ; Heo S. W. ; Lee W. ; Inoue D. ; Jiang Z. ; Yu K. ; Jinno H. ; Hashizume D. ; Sekino M. ; Yokota T. ; Fukuda K. ; Tajima K. ; Someya T. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics . Nature , 2018 , 561 ( 7724 ), 516 - 521 . doi: 10.1038/s41586-018-0536-x http://dx.doi.org/10.1038/s41586-018-0536-x
Xu X. M. ; Fukuda K. ; Karki A. ; Park S. ; Kimura H. ; Jinno H. ; Watanabe N. ; Yamamoto S. ; Shimomura S. ; Kitazawa D. ; Yokota T. ; Umezu S. ; Nguyen T. Q. ; Someya T. Thermally stable, highly efficient, ultraflexible organic photovoltaics . Proc. Natl. Acad. Sci. USA , 2018 , 115 ( 18 ), 4589 - 4594 . doi: 10.1073/pnas.1801187115 http://dx.doi.org/10.1073/pnas.1801187115
Kimura H. ; Fukuda K. ; Jinno H. ; Park S. ; Saito M. ; Osaka I. ; Takimiya K. ; Umezu S. ; Someya T. High operation stability of ultraflexible organic solar cells with ultraviolet-filtering substrates . Adv. Mater. , 2019 , 31 ( 19 ), 1808033 . doi: 10.1002/adma.201808033 http://dx.doi.org/10.1002/adma.201808033
Huang W. C. ; Jiang Z. ; Fukuda K. ; Jiao X. C. ; McNeill C. R. ; Yokota T. ; Someya T. Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors . Joule , 2020 , 4 ( 1 ), 128 - 141 . doi: 10.1016/j.joule.2019.10.007 http://dx.doi.org/10.1016/j.joule.2019.10.007
Jiang Z. ; Wang F. J. ; Fukuda K. ; Karki A. ; Huang W. C. ; Yu K. ; Yokota T. ; Tajima K. ; Nguyen T. Q. ; Someya T. Highly efficient organic photovoltaics with enhanced stability through the formation of doping-induced stable interfaces . Proc. Natl. Acad. Sci. USA , 2020 , 117 ( 12 ), 6391 - 6397 . doi: 10.1073/pnas.1919769117 http://dx.doi.org/10.1073/pnas.1919769117
Bihar E. ; Corzo D. ; Hidalgo T. C. ; Rosas-Villalva D. ; Salama K. N. ; Inal S. ; Baran D. Fully inkjet-printed, ultrathin and conformable organic photovoltaics as power source based on cross-linked PEDOT: PSS electrodes . Adv. Mater. Technol. , 2020 , 5 ( 8 ), 2000226 . doi: 10.1002/admt.202000226 http://dx.doi.org/10.1002/admt.202000226
Wang Y. M. ; Chen Q. M. ; Zhang G. C. ; Xiao C. Y. ; Wei Y. ; Li W. W. Ultrathin flexible transparent composite electrode via semi-embedding silver nanowires in a colorless polyimide for high-performance ultraflexible organic solar cells . ACS Appl. Mater. Interfaces , 2022 , 14 ( 4 ), 5699 - 5708 . doi: 10.1021/acsami.1c18866 http://dx.doi.org/10.1021/acsami.1c18866
Wang Y. P. ; Chen Q. M. ; Zhang G. C. ; Wang Y. M. ; Zhang Z. ; Fang J. ; Zhao C. W. ; Li W. W. Polyimide/ZnO composite cooperatively crosslinked by Zn 2+ Salt-Bondings and hydrogen bondings for ultraflexible organic solar cells . Chem. Eng. J. , 2023 , 451 , 138612 . doi: 10.1016/j.cej.2022.138612 http://dx.doi.org/10.1016/j.cej.2022.138612
Xiong S. X. ; Fukuda K. ; Nakano K. ; Lee S. ; Sumi Y. ; Takakuwa M. ; Inoue D. ; Hashizume D. ; Du B. C. ; Yokota T. ; Zhou Y. H. ; Tajima K. ; Someya T. Waterproof and ultraflexible organic photovoltaics with improved interface adhesion . Nat. Commun. , 2024 , 15 ( 1 ), 681 . doi: 10.1038/s41467-024-44878-z http://dx.doi.org/10.1038/s41467-024-44878-z
Saifi S. ; Xiao X. ; Cheng S. M. ; Guo H. T. ; Zhang J. S. ; Müller-Buschbaum P. ; Zhou G. M. ; Xu X. M. ; Cheng H. M. An ultraflexible energy harvesting-storage system for wearable applications . Nat. Commun. , 2024 , 15 ( 1 ), 6546 . doi: 10.1038/s41467-024-50894-w http://dx.doi.org/10.1038/s41467-024-50894-w
Sun L. L. ; Zeng W. W. ; Xie C. ; Hu L. ; Dong X. Y. ; Qin F. ; Wang W. ; Liu T. F. ; Jiang X. S. ; Jiang Y. Y. ; Zhou Y. H. Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers . Adv. Mater. , 2020 , 32 ( 14 ), 1907840 . doi: 10.1002/adma.201907840 http://dx.doi.org/10.1002/adma.201907840
Song W. ; Fan X. ; Xu B. G. ; Yan F. ; Cui H. Q. ; Wei Q. ; Peng R. X. ; Hong L. ; Huang J. M. ; Ge Z. Y. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency . Adv. Mater. , 2018 , 30 ( 26 ), 1800075 . doi: 10.1002/adma.201800075 http://dx.doi.org/10.1002/adma.201800075
Fan X. ; Nie W. Y. ; Tsai H. ; Wang N. X. ; Huang H. H. ; Cheng Y. J. ; Wen R. J. ; Ma L. J. ; Yan F. ; Xia Y. G. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications . Adv. Sci. , 2019 , 6 ( 19 ), 1900813 . doi: 10.1002/advs.201900813 http://dx.doi.org/10.1002/advs.201900813
Vosgueritchian M. ; Lipomi D. J. ; Bao Z. N. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes . Adv. Funct. Mater. , 2012 , 22 ( 2 ), 421 - 428 . doi: 10.1002/adfm.201101775 http://dx.doi.org/10.1002/adfm.201101775
Li H. ; Chen Q. M. ; Zhang G. C. ; Zhang Z. ; Fang J. ; Zhao C. W. ; Li W. W. Stable, highly conductive and orthogonal silver nanowire networks via zwitterionic treatment . J. Mater. Chem. A , 2023 , 11 ( 1 ), 158 - 166 . doi: 10.1039/d2ta07406k http://dx.doi.org/10.1039/d2ta07406k
Chen X. B. ; Xu G. Y. ; Zeng G. ; Gu H. W. ; Chen H. Y. ; Xu H. T. ; Yao H. F. ; Li Y. W. ; Hou J. H. ; Li Y. F. Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a "welding" flexible transparent electrode . Adv. Mater. , 2020 , 32 ( 14 ), 1908478 . doi: 10.1002/adma.201908478 http://dx.doi.org/10.1002/adma.201908478
Wang Z. G. ; Han Y. F. ; Yan L. P. ; Gong C. ; Kang J. C. ; Zhang H. ; Sun X. ; Zhang L. P. ; Lin J. ; Luo Q. ; Ma C. Q. High power conversion efficiency of 13.61% for 1 Cm 2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes . Adv. Funct. Mater., 2021, 31 ( 4 ), 2007276 . doi: 10.1002/adfm.202007276 http://dx.doi.org/10.1002/adfm.202007276
Qu T. Y. ; Zuo L. J. ; Chen J. D. ; Shi X. L. ; Zhang T. ; Li L. ; Shen K. C. ; Ren H. ; Wang S. ; Xie F. M. ; Li Y. Q. ; Jen A. K. Y. ; Tang J. X. Biomimetic electrodes for flexible organic solar cells with efficiencies over 16 %. Adv. Opt. Mater. , 2020 , 8 ( 17 ), 2000669 . doi: 10.1002/adom.202000669 http://dx.doi.org/10.1002/adom.202000669
Sun Y. N. ; Chang M. J. ; Meng L. X. ; Wan X. J. ; Gao H. H. ; Zhang Y. M. ; Zhao K. ; Sun Z. H. ; Li C. X. ; Liu S. R. ; Wang H. K. ; Liang J. J. ; Chen Y. S. Flexible organic photovoltaics based on water-processed silver nanowire electrodes . Nat. Electron. , 2019 , 2 ( 11 ), 513 - 520 . doi: 10.1038/s41928-019-0315-1 http://dx.doi.org/10.1038/s41928-019-0315-1
Zeng G. ; Chen W. J. ; Chen X. B. ; Hu Y. ; Chen Y. ; Zhang B. ; Chen H. Y. ; Sun W. W. ; Shen Y. X. ; Li Y. W. ; Yan F. ; Li Y. F. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes . J. Am. Chem. Soc. , 2022 , 144 ( 19 ), 8658 - 8668 . doi: 10.1021/jacs.2c01503 http://dx.doi.org/10.1021/jacs.2c01503
Lim J. W. ; Cho D. Y. ; Eun K. ; Choa S. H. ; Na S. I. ; Kim J. ; Kim H. K. Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells . Sol. Energy Mater. Sol. Cells , 2012 , 105 , 69 - 76 . doi: 10.1016/j.solmat.2012.05.036 http://dx.doi.org/10.1016/j.solmat.2012.05.036
Langley D. ; Giusti G. ; Mayousse C. ; Celle C. ; Bellet D. ; Simonato J. P. Flexible transparent conductive materials based on silver nanowire networks: a review . Nanotechnology , 2013 , 24 ( 45 ), 452001 . doi: 10.1088/0957-4484/24/45/452001 http://dx.doi.org/10.1088/0957-4484/24/45/452001
Kwon Y. B. ; Kim J. H. ; Kim Y. K. Efficient protection of silver nanowire transparent electrodes by all-biorenewable layer-by-layer assembled thin films . ACS Appl. Mater. Interfaces , 2022 , 14 ( 22 ), 25993 - 26003 . doi: 10.1021/acsami.2c02876 http://dx.doi.org/10.1021/acsami.2c02876
Lu X. ; Xie C. ; Liu Y. ; Zheng H. ; Feng K. ; Xiong Z. D. ; Wei W. X. ; Zhou Y. H. Increase in the efficiency and stability of large-area flexible organic photovoltaic modules via improved electrical contact . Nat. Energy , 2024 , 9 ( 7 ), 793 - 802 . doi: 10.1038/s41560-024-01501-1 http://dx.doi.org/10.1038/s41560-024-01501-1
Nickel F. ; Haas T. ; Wegner E. ; Bahro D. ; Salehin S. ; Kraft O. ; Gruber P. A. ; Colsmann A. Mechanically robust, ITO-free, 4.8% efficient, all-solution processed organic solar cells on flexible PET foil . Sol. Energy Mater. Sol. Cells , 2014 , 130 , 317 - 321 . doi: 10.1016/j.solmat.2014.07.005 http://dx.doi.org/10.1016/j.solmat.2014.07.005
Leem D. S. ; Edwards A. ; Faist M. ; Nelson J. ; Bradley D. D. C. ; de Mello J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes . Adv. Mater. , 2011 , 23 ( 38 ), 4371 - 4375 . doi: 10.1002/adma.201100871 http://dx.doi.org/10.1002/adma.201100871
Lee D. ; Lee H. ; Ahn Y. ; Jeong Y. ; Lee D. Y. ; Lee Y. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices . Nanoscale , 2013 , 5 ( 17 ), 7750 - 7755 . doi: 10.1039/c3nr02320f http://dx.doi.org/10.1039/c3nr02320f
Gaynor W. ; Burkhard G. F. ; McGehee M. D. ; Peumans P. Smooth nanowire/polymer composite transparent electrodes . Adv. Mater. , 2011 , 23 ( 26 ), 2905 - 2910 . doi: 10.1002/adma.201100566 http://dx.doi.org/10.1002/adma.201100566
Yu Z. B. ; Zhang Q. W. ; Li L. ; Chen Q. ; Niu X. F. ; Liu J. ; Pei Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes . Adv. Mater. , 2011 , 23 ( 5 ), 664 - 668 . doi: 10.1002/adma.201003398 http://dx.doi.org/10.1002/adma.201003398
Hu L. B. ; Kim H. S. ; Lee J. Y. ; Peumans P. ; Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes . ACS Nano , 2010 , 4 ( 5 ), 2955 - 2963 . doi: 10.1021/nn1005232 http://dx.doi.org/10.1021/nn1005232
Yu Z. B. ; Li L. ; Zhang Q. W. ; Hu W. L. ; Pei Q. B. Silver nanowire-polymer composite electrodes for efficient polymer solar cells . Adv. Mater. , 2011 , 23 ( 38 ), 4453 - 4457 . doi: 10.1002/adma.201101992 http://dx.doi.org/10.1002/adma.201101992
Xia Z. Z. ; Lei X. Y. ; Hu Y. W. ; Liu X. J. ; Ji Y. T. ; Zhang D. Y. ; Cheng Y. Y. ; Liu X. D. ; Xu Z. Z. ; Yang X. Y. ; Zhong J. ; Huang W. C. Ultrathin flexible indium tin oxide-free organic solar cells with gradient bilayer electron transport materials . Sol. RRL , 2024 , 8 ( 12 ), 2400230 . doi: 10.1002/solr.202400230 http://dx.doi.org/10.1002/solr.202400230
Zheng X. J. ; Wang Y. M. ; Chen T. Y. ; Kong Y. B. ; Wu X. L. ; Zhou C. ; Luo Q. ; Ma C. Q. ; Zuo L. J. ; Shi M. M. ; Chen H. Z. Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes . FlexMat , 2024 , 1 ( 3 ), 221 - 233 . doi: 10.1002/flm2.30 http://dx.doi.org/10.1002/flm2.30
Wang Y. M. ; Chen Q. M. ; Wang Y. P. ; Zhang G. C. ; Zhang Z. ; Fang J. ; Zhao C. W. ; Li W. W. Mechanically and ultraviolet light stable ultrathin organic solar cell via semi-embedding silver nanowires in a hydrogen bonds-based polyimide . Macromol. Rapid Commun. , 2022 , 43 ( 22 ), 2200432 . doi: 10.1002/marc.202200432 http://dx.doi.org/10.1002/marc.202200432
Xiao Z. ; Li S. T. ; Liu J. ; Chen X. ; Suo Z. C. ; Li C. X. ; Wan X. J. ; Chen Y. S. Ecofriendly cellulose substrate-based flexible transparent electrode for flexible organic solar cells with efficiency over 18 %. Sol. RRL , 2024 , 8 ( 11 ), 2400206 . doi: 10.1002/solr.202400206 http://dx.doi.org/10.1002/solr.202400206
Heo S. W. Ultra-flexible organic photovoltaics with nanograting patterns based on CYTOP/Ag nanowires substrate . Nanomaterials , 2020 , 10 ( 11 ), 2185 . doi: 10.3390/nano10112185 http://dx.doi.org/10.3390/nano10112185
Vohra V. ; Kawashima K. ; Kakara T. ; Koganezawa T. ; Osaka I. ; Takimiya K. ; Murata H. Efficient inverted polymer solar cells employing favourable molecular orientation . Nat. Photon. , 2015 , 9 ( 6 ), 403 - 408 . doi: 10.1038/nphoton.2015.84 http://dx.doi.org/10.1038/nphoton.2015.84
White M. S. ; Kaltenbrunner M. ; Głowacki E. D. ; Gutnichenko K. ; Kettlgruber G. ; Graz I. ; Aazou S. ; Ulbricht C. ; Egbe D. A. M. ; Miron M. C. ; Major Z. ; Scharber M. C. ; Sekitani T. ; Someya T. ; Bauer S. ; Sariciftci N. S. Ultrathin, highly flexible and stretchable PLEDs . Nat. Photon. , 2013 , 7 ( 10 ), 811 - 816 . doi: 10.1038/nphoton.2013.188 http://dx.doi.org/10.1038/nphoton.2013.188
Kim D. H. ; Ahn J. H. ; Choi W. M. ; Kim H. S. ; Kim T. H. ; Song J. Z. ; Huang Y. Y. ; Liu Z. J. ; Lu C. ; Rogers J. A. Stretchable and foldable silicon integrated circuits . Science , 2008 , 320 ( 5875 ), 507 - 511 . doi: 10.1126/science.1154367 http://dx.doi.org/10.1126/science.1154367
Liu Y. H. ; Liu B. W. ; Ma C. Q. ; Huang F. ; Feng G. T. ; Chen H. Z. ; Hou J. H. ; Yan L. P. ; Wei Q. Y. ; Luo Q. ; Bao Q. Y. ; Ma W. ; Liu W. ; Li W. W. ; Wan X. J. ; Hu X. T. ; Han Y. C. ; Li Y. W. ; Zhou Y. H. ; Zou Y. P. ; Chen Y. W. ; Liu Y. Q. ; Meng L. ; Li Y. F. ; Chen Y. S. ; Tang Z. ; Hu Z. C. ; Zhang Z. G. ; Bo Z. S. Recent progress in organic solar cells (Part II device engineering) . Sci. China Chem. , 2022 , 65 ( 8 ), 1457 - 1497 . doi: 10.1007/s11426-022-1256-8 http://dx.doi.org/10.1007/s11426-022-1256-8
Zeng S. M. ; Li H. J. ; Liu S. Q. ; Xue T. Y. ; Zhang K. ; Hu L. ; Cai Z. R. ; Cui Y. T. ; Wang H. L. ; Zhang M. ; Hu X. T. ; Ye L. ; Song Y. L. ; Chen Y. W. Interface design based on strain isolation theory with an optimized neutral mechanical plane enables highly ductile and flexible organic photovoltaics . Energy Environ. Sci. , 2025 , DOI: 10.1039/D4EE02963A. http://dx.doi.org/10.1039/D4EE02963A.
Baran D. ; Ashraf R. S. ; Hanifi D. A. ; Abdelsamie M. ; Gasparini N. ; Röhr J. A. ; Holliday S. ; Wadsworth A. ; Lockett S. ; Neophytou M. ; Emmott C. J. M. ; Nelson J. ; Brabec C. J. ; Amassian A. ; Salleo A. ; Kirchartz T. ; Durrant J. R. ; McCulloch I. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells . Nat. Mater. , 2017 , 16 ( 3 ), 363 - 369 . doi: 10.1038/nmat4797 http://dx.doi.org/10.1038/nmat4797
Xin Y. F. ; Liu H. ; Dong X. Y. ; Xiao Z. ; Wang R. ; Gao Y. P. ; Zou Y. ; Kan B. ; Wan X. J. ; Liu Y. S. ; Chen Y. S. Multiarmed aromatic ammonium salts boost the efficiency and stability of inverted organic solar cells . J. Am. Chem. Soc. , 2024 , 146 ( 5 ), 3363 - 3372 . doi: 10.1021/jacs.3c12605 http://dx.doi.org/10.1021/jacs.3c12605
Li H. Y. ; Yu B. ; Yu H. Z. An efficient and stable inverted structure organic solar cell using ZnO modified by 2 D ZrSe 2 as a composite electron transport layer . Adv. Funct. Mater., 2024, 34 ( 37 ), 2402128 . doi: 10.1002/adfm.202402128 http://dx.doi.org/10.1002/adfm.202402128
Liu X. Y. ; Zheng Z. ; Wang J. Q. ; Wang Y. F. ; Xu B. W. ; Zhang S. Q. ; Hou J. H. Fluidic manipulating of printable zinc oxide for flexible organic solar cells . Adv. Mater. , 2022 , 34 ( 3 ), 2106453 . doi: 10.1002/adma.202106453 http://dx.doi.org/10.1002/adma.202106453
Li S. T. ; Fu Q. ; Meng L. X. ; Wan X. J. ; Ding L. M. ; Lu G. Y. ; Lu G. H. ; Yao Z. Y. ; Li C. X. ; Chen Y. S. Achieving over 18 % efficiency organic solar cell enabled by a ZnO-based hybrid electron transport layer with an operational lifetime up to 5 Years . Angew. Chem. Int. Ed., 2022, 61 ( 34 ), e 202207397 . doi: 10.1002/anie.202207397 http://dx.doi.org/10.1002/anie.202207397
Xiong S. X. ; Fukuda K. ; Lee S. ; Nakano K. ; Dong X. Y. ; Yokota T. ; Tajima K. ; Zhou Y. H. ; Someya T. Ultrathin and efficient organic photovoltaics with enhanced air stability by suppression of zinc element diffusion . Adv. Sci. , 2022 , 9 ( 8 ), 2105288 . doi: 10.1002/advs.202105288 http://dx.doi.org/10.1002/advs.202105288
Liu X. J. ; Ji Y. T. ; Xia Z. Z. ; Zhang D. Y. ; Cheng Y. Y. ; Liu X. D. ; Ren X. J. ; Liu X. T. ; Huang H. R. ; Zhu Y. Q. ; Yang X. Y. ; Liao X. B. ; Ren L. ; Tan W. L. ; Jiang Z. ; Lu J. F. ; McNeill C. ; Huang W. C. In-doped ZnO electron transport layer for high-efficiency ultrathin flexible organic solar cells . Adv. Sci. , 2024 , 11 ( 37 ), 2402158 . doi: 10.1002/advs.202470223 http://dx.doi.org/10.1002/advs.202470223
Zhao B. ; Chung S. ; Zhang M. ; Wei W. N. ; Zhu C. F. ; Deng C. H. ; Cho K. ; Kan Z. P. 18.9% efficiency binary organic solar cells enabled by regulating the intrinsic properties of PEDOT:PSS . Adv. Funct. Mater. , 2024 , 34 ( 7 ), 2309832 . doi: 10.1002/adfm.202309832 http://dx.doi.org/10.1002/adfm.202309832
Wang J. C. ; Ochiai Y. ; Wu N. N. ; Adachi K. ; Inoue D. ; Hashizume D. ; Kong D. S. ; Matsuhisa N. ; Yokota T. ; Wu Q. ; Ma W. ; Sun L. L. ; Xiong S. X. ; Du B. C. ; Wang W. Q. ; Shih C. J. ; Tajima K. ; Aida T. ; Fukuda K. ; Someya T. Intrinsically stretchable organic photovoltaics by redistributing strain to PEDOT:PSS with enhanced stretchability and interfacial adhesion . Nat. Commun. , 2024 , 15 ( 1 ), 4902 . doi: 10.1038/s41467-024-49352-4 http://dx.doi.org/10.1038/s41467-024-49352-4
Zhang D. Y. ; Ji Y. T. ; Cheng Y. Y. ; Liu X. D. ; Xia Z. Z. ; Liu X. J. ; Liu X. T. ; Yang X. Y. ; Huang W. C. High-efficiency ultrathin flexible organic solar cells with a bilayer hole transport layer . J. Mater. Chem. A , 2024 , 12 ( 25 ), 15099 - 15105 . doi: 10.1039/d4ta01679c http://dx.doi.org/10.1039/d4ta01679c
Han S. ; Jung H. ; Jung H. J. ; Hwang B. K. ; Park I. P. ; Kim S. Z. ; Yun D. H. ; Yoon S. Y. ; Heo S. W. Optical manipulation of incident light for enhanced photon absorption in ultrathin organic photovoltaics . Nanomaterials , 2022 , 12 ( 22 ), 3996 . doi: 10.3390/nano12223996 http://dx.doi.org/10.3390/nano12223996
Takakuwa M. ; Heo S. W. ; Fukuda K. ; Tajima K. ; Park S. ; Umezu S. ; Someya T. Nanograting structured ultrathin substrate for ultraflexible organic photovoltaics . Small Methods , 2020 , 4 ( 3 ), 1900762 . doi: 10.1002/smtd.202070013 http://dx.doi.org/10.1002/smtd.202070013
Yun J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices . Adv. Funct. Mater. , 2017 , 27 ( 18 ), 1606641 . doi: 10.1002/adfm.201606641 http://dx.doi.org/10.1002/adfm.201606641
Li W. T. ; Zhang H. ; Shi S. W. ; Xu J. X. ; Qin X. ; He Q. Q. ; Yang K. C. ; Dai W. B. ; Liu G. ; Zhou Q. G. ; Yu H. Z. ; Silva S. R. P. ; Fahlman M. Recent progress in silver nanowire networks for flexible organic electronics . J. Mater. Chem. C , 2020 , 8 ( 14 ), 4636 - 4674 . doi: 10.1039/c9tc06865a http://dx.doi.org/10.1039/c9tc06865a
Salinas J. F. ; Yip H. L. ; Chueh C. C. ; Li C. Z. ; Maldonado J. L. ; Jen A. K. Y. Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells . Adv. Mater. , 2012 , 24 ( 47 ), 6362 - 6367 . doi: 10.1002/adma.201203099 http://dx.doi.org/10.1002/adma.201203099
Zuo L. J. ; Zhang S. H. ; Li H. Y. ; Chen H. Z. Toward highly efficient large-area ITO-free organic solar cells with a conductance-gradient transparent electrode . Adv. Mater. , 2015 , 27 ( 43 ), 6983 - 6989 . doi: 10.1002/adma.201502827 http://dx.doi.org/10.1002/adma.201502827
Li Y. K. ; He C. L. ; Zuo L. J. ; Zhao F. ; Zhan L. L. ; Li X. ; Xia R. X. ; Yip H. L. ; Li C. Z. ; Liu X. ; Chen H. Z. High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity . Adv. Energy Mater. , 2021 , 11 ( 11 ), 2003408 . doi: 10.1002/aenm.202003408 http://dx.doi.org/10.1002/aenm.202003408
Zheng X. J. ; Zuo L. J. ; Zhao F. ; Li Y. K. ; Chen T. Y. ; Shan S. Q. ; Yan K. R. ; Pan Y. W. ; Xu B. W. ; Li C. Z. ; Shi M. M. ; Hou J. H. ; Chen H. Z. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability . Adv. Mater. , 2022 , 34 ( 17 ), 2200044 . doi: 10.1002/adma.202200044 http://dx.doi.org/10.1002/adma.202200044
Zhang C. ; Ji C. G. ; Park Y. B. ; Guo L. J. Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications (advanced optical materials 3 / 2021 ). Adv. Opt. Mater. , 2021 , 9 ( 3 ), 2170009 .
Bae S. K. ; Kim H. ; Lee Y. ; Xu X. F. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. ; Kim Y. J. ; Kim K. S. ; Ozyilmaz B. ; Ahn J. H. ; Hong B. H. ; Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes . Nat. Nanotechnol. , 2010 , 5 ( 8 ), 574 - 578 . doi: 10.1038/nnano.2010.132 http://dx.doi.org/10.1038/nnano.2010.132
Zuo L. J. ; Zhang S. H. ; Shi M. M. ; Li H. Y. ; Chen H. Z. Design of charge transporting grids for efficient ITO-free flexible up-scaled organic photovoltaics . Mater. Chem. Front. , 2017 , 1 ( 2 ), 304 - 309 . doi: 10.1039/c6qm00043f http://dx.doi.org/10.1039/c6qm00043f
Jiang Z. ; Fukuda K. ; Huang W. C. ; Park S. ; Nur R. ; Nayeem M. O. G. ; Yu K. ; Inoue D. ; Saito M. ; Kimura H. ; Yokota T. ; Umezu S. ; Hashizume D. ; Osaka I. ; Takimiya K. ; Someya T. Durable ultraflexible organic photovoltaics with novel metal-oxide-free cathode . Adv. Funct. Mater. , 2019 , 29 ( 6 ), 1808378 . doi: 10.1002/adfm.201808378 http://dx.doi.org/10.1002/adfm.201808378
许君君 , 黄金华 , 盛伟 , 王肇肇 , 赵文凯 , 李佳 , 杨晔 , 万冬云 , 宋伟杰 . 超薄金属透明导电膜及其应用研究进展 . 材料导报 , 2019 , 33 ( 11 ), 1875 - 1881 . doi: 10.11896/cldb.18040164 http://dx.doi.org/10.11896/cldb.18040164
Fu X. M. ; Xu L. M. ; Li J. X. ; Sun X. M. ; Peng H. S. Flexible solar cells based on carbon nanomaterials . Carbon , 2018 , 139 , 1063 - 1073 . doi: 10.1016/j.carbon.2018.08.017 http://dx.doi.org/10.1016/j.carbon.2018.08.017
Park S. ; Vosguerichian M. ; Bao Z. N. A review of fabrication and applications of carbon nanotube film-based flexible electronics . Nanoscale , 2013 , 5 ( 5 ), 1727 - 1752 . doi: 10.1039/c3nr33560g http://dx.doi.org/10.1039/c3nr33560g
Fan Q. X. ; Zhang Q. ; Zhou W. B. ; Yang F. ; Zhang N. ; Xiao S. Q. ; Gu X. G. ; Xiao Z. J. ; Chen H. L. ; Wang Y. C. ; Liu H. P. ; Zhou W. Y. Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells . Chin. Phys. B , 2017 , 26 ( 2 ), 028801 . doi: 10.1088/1674-1056/26/2/028801 http://dx.doi.org/10.1088/1674-1056/26/2/028801
Chen H. Y. ; Zhang R. ; Chen X. B. ; Zeng G. ; Kobera L. ; Abbrent S. ; Zhang B. ; Chen W. J. ; Xu G. Y. ; Oh J. ; Kang S. H. ; Chen S. S. ; Yang C. ; Brus J. ; Hou J. H. ; Gao F. ; Li Y. W. ; Li Y. F. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents . Nat. Energy , 2021 , 6 ( 11 ), 1045 - 1053 . doi: 10.1038/s41560-021-00923-5 http://dx.doi.org/10.1038/s41560-021-00923-5
Qin F. ; Sun L. L. ; Chen H. T. ; Liu Y. ; Lu X. ; Wang W. ; Liu T. F. ; Dong X. Y. ; Jiang P. ; Jiang Y. Y. ; Wang L. ; Zhou Y. H. 54 Cm2 large-area flexible organic solar modules with efficiency above 13 %. Adv. Mater. , 2021, 33 ( 39 ), 2103017 . doi: 10.1002/adma.202103017 http://dx.doi.org/10.1002/adma.202103017
Wang G. D. ; Adil M. A. ; Zhang J. Q. ; Wei Z. X. Large-area organic solar cells: material requirements, modular designs, and printing methods . Adv. Mater. , 2019 , 31 ( 45 ), 1805089 . doi: 10.1002/adma.201970324 http://dx.doi.org/10.1002/adma.201970324
Yang F. ; Huang Y. T. ; Li Y. W. ; Li Y. F. Large-area flexible organic solar cells . NPJ Flex. Electron. , 2021 , 5 , 30 . doi: 10.1038/s41528-021-00128-6 http://dx.doi.org/10.1038/s41528-021-00128-6
Park S. ; Fukuda K. ; Wang M. ; Lee C. ; Yokota T. ; Jin H. ; Jinno H. ; Kimura H. ; Zalar P. ; Matsuhisa N. ; Umezu S. ; Bazan G. C. ; Someya T. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors . Adv. Mater. , 2018 , 30 ( 34 ), 1802359 . doi: 10.1002/adma.201870252 http://dx.doi.org/10.1002/adma.201870252
Jinno H. ; Yokota T. ; Koizumi M. ; Yukita W. ; Saito M. ; Osaka I. ; Fukuda K. ; Someya T. Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes . Nat. Commun. , 2021 , 12 ( 1 ), 2234 . doi: 10.1038/s41467-021-22558-6 http://dx.doi.org/10.1038/s41467-021-22558-6
Jeong E. G. ; Jeon Y. ; Cho S. H. ; Choi K. C. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing . Energy Environ. Sci. , 2019 , 12 ( 6 ), 1878 - 1889 . doi: 10.1039/c8ee03271h http://dx.doi.org/10.1039/c8ee03271h
Kakei Y. ; Katayama S. ; Lee S. ; Takakuwa M. ; Furusawa K. ; Umezu S. ; Sato H. ; Fukuda K. ; Someya T. Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility . NPJ Flex. Electron. , 2022 , 6 , 78 . doi: 10.1038/s41528-022-00207-2 http://dx.doi.org/10.1038/s41528-022-00207-2
Park J. S. ; Kim G. U. ; Lee S. ; Lee J. W. ; Li S. ; Lee J. Y. ; Kim B. J. Material design and device fabrication strategies for stretchable organic solar cells . Adv. Mater. , 2022 , 34 ( 31 ), 2201623 . doi: 10.1002/adma.202270230 http://dx.doi.org/10.1002/adma.202270230
Zhang K. ; Chen Z. M. ; Armin A. ; Dong S. ; Xia R. X. ; Yip H. L. ; Shoaee S. ; Huang F. ; Cao Y. Efficient large area organic solar cells processed by blade-coating with single-component green solvent . Sol. RRL , 2018 , 2 ( 1 ), 1700169 . doi: 10.1002/solr.201700169 http://dx.doi.org/10.1002/solr.201700169
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构