浏览全部资源
扫码关注微信
1.北京化工大学 有机无机复合材料国家重点实验室 北京 100029
2.华南理工大学 前沿弹性体研究院 广州 510640
3.黄埔绿色先进材料技术研究院 广州 510555
E-mail: wangzhao@mail.buct.edu.cn
zhanglq@mail.buct.edu.cn
收稿日期:2024-12-04,
录用日期:2025-01-15,
网络出版日期:2025-04-01,
纸质出版日期:2025-05-20
移动端阅览
孙振涛, 张奇男, 刘庆生, 王朝, 张立群. 全生物基聚酯弹性体/木质素复合材料的制备及性能研究. 高分子学报, 2025, 56(5), 767-777
Sun, Z. T.; Zhang, Q. N.; Liu, Q. S.; Wang, Z.; Zhang, L. Q. Preparation and properties of fully bio-based polyester elastomer/lignin composites. Acta Polymerica Sinica, 2025, 56(5), 767-777
孙振涛, 张奇男, 刘庆生, 王朝, 张立群. 全生物基聚酯弹性体/木质素复合材料的制备及性能研究. 高分子学报, 2025, 56(5), 767-777 DOI: 10.11777/j.issn1000-3304.2024.24290. CSTR: 32057.14.GFZXB.2025.7343.
Sun, Z. T.; Zhang, Q. N.; Liu, Q. S.; Wang, Z.; Zhang, L. Q. Preparation and properties of fully bio-based polyester elastomer/lignin composites. Acta Polymerica Sinica, 2025, 56(5), 767-777 DOI: 10.11777/j.issn1000-3304.2024.24290. CSTR: 32057.14.GFZXB.2025.7343.
以生物基二元酸、二元醇等单体合成的生物基聚酯弹性体为基体,采用大宗生物质资源木质素作为补强填料,制备了全生物基聚酯弹性体/木质素复合材料. 同时,通过引入甲基丙烯酸锌(ZDMA)在木质素与生物基聚酯弹性体基体之间构建界面锌配位键,提高了木质素在生物基聚酯弹性体中的分散性和力学性能.结果表明,随着ZDMA用量增加,生物基聚酯弹性体复合材料力学性能明显提高.与未添加ZDMA的聚酯弹性体复合材料相比,添加了20 phr木质素和6 phr ZDMA的生物基聚酯弹性体复合材料的拉伸强度提高了386%,可达到10.2 MPa.有望应用于生物基鞋材、密封圈等橡胶制品领域.
To address the challenges of natural rubber resource shortages and the high carbon emissions associated with synthetic rubber
this study developed a bio-based polyester elastomer/lignin composite material. The composite materials was prepared with bio-based polyester elastomer as matrix and biomass resource lignin as reinforcing filler. Although lignin possesses abundant polar functional groups and excellent reinforcing potential
its poor dispersibility and tendency to agglomerate within the matrix limit its effectiveness. To overcome this
zinc methacrylate (ZDMA) was introduced to enhance lignin dispersion and improve the mechanical properties of the composite by forming interfacial zinc coordination bonds. The formation of these coordination bonds was confirmed through fourier transform infrared spectroscopy (FTIR)
while scanning electron microscopy (SEM) revealed a significant improvement in lignin particle dispersion. The introduction of ZDMA not only strengthened the interaction between lignin and the elastomer matrix but also enhanced the dynamic properties of the composite by enabling energy absorption. As the ZDMA dosage increased
the tensile strength of the composite improved substantially. At a lignin dosage of 20 phr and a ZDMA dosage of 6 phr
the composite achieved a tensile strength of 10.2 MPa
an increase of 386% compared to composites without ZDMA. Furthermore
the composite exhibited excellent dynamic mechanical properties
including high energy storage modulus and energy absorption capacity
meeting the performance requirements for applications such as shoe materials and sealing rings. This study proposes a simple and effective composite modification method
leveraging ZDMA to enable efficient lignin utilization and producing a fully bio-based rubber material with exceptional performance and environmental sustainability.
吉海军 , 乔荷 , 王朝 , 杨慧 , 王润国 , 张立群 . 生物基合成橡胶的研究进展 . 材料工程 , 2019 , 47 ( 12 ), 1 - 9 . doi: 10.11868/j.issn.1001-4381.2019.000207 http://dx.doi.org/10.11868/j.issn.1001-4381.2019.000207
Yamashita S. ; Takahashi S. Molecular mechanisms of natural rubber biosynthesis . Annu. Rev. Biochem. , 2020 , 89 , 821 - 851 . doi: 10.1146/annurev-biochem-013118-111107 http://dx.doi.org/10.1146/annurev-biochem-013118-111107
Rahman A. ; Woahid Murad S. M. ; Mohsin A. K. M. ; Wang X. W. Does renewable energy proactively contribute to mitigating carbon emissions in major fossil fuels consuming countries? J. Clean. Prod. , 2024 , 452 , 142113 . doi: 10.1016/j.jclepro.2024.142113 http://dx.doi.org/10.1016/j.jclepro.2024.142113
Cherian S. ; Ryu S. B. ; Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects . Plant Biotechnol. J. , 2019 , 17 ( 11 ), 2041 - 2061 . doi: 10.1111/pbi.13181 http://dx.doi.org/10.1111/pbi.13181
Rivano F. ; Mattos C. R. R. ; Cardoso S. E. A. ; Martinez M. ; Cevallos V. ; Le Guen V. ; Garcia D. Breeding Hevea brasiliensis for yield, growth and SALB resistance for high disease environments . Ind. Crops Prod. , 2013 , 44 , 659 - 670 . doi: 10.1016/j.indcrop.2012.09.005 http://dx.doi.org/10.1016/j.indcrop.2012.09.005
Jiang R. ; Chen Y. C. ; Yao S. ; Liu T. ; Xu Z. M. ; Park C. B. ; Zhao L. Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction . Polymer , 2019 , 179 , 121628 . doi: 10.1016/j.polymer.2019.121628 http://dx.doi.org/10.1016/j.polymer.2019.121628
Huang J. ; Qiu Y. X. ; Wu D. F. ; Wang J. New way to tailor thermal stability and mechanical properties of thermoplastic polyester elastomer: relations between interfacial structure and surface treatment of spodumene slag . Ind. Eng. Chem. Res. , 2017 , 56 ( 21 ), 6239 - 6246 . doi: 10.1021/acs.iecr.7b00904 http://dx.doi.org/10.1021/acs.iecr.7b00904
Rai R. ; Tallawi M. ; Grigore A. ; Boccaccini A. R. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review . Prog. Polym. Sci. , 2012 , 37 ( 8 ), 1051 - 1078 . doi: 10.1016/j.progpolymsci.2012.02.001 http://dx.doi.org/10.1016/j.progpolymsci.2012.02.001
Ye H. Y. ; Zhang K. Y. ; Kai D. ; Li Z. B. ; Loh X. J. Polyester elastomers for soft tissue engineering . Chem. Soc. Rev. , 2018 , 47 ( 12 ), 4545 - 4580 . doi: 10.1039/c8cs00161h http://dx.doi.org/10.1039/c8cs00161h
Wang R. G. ; Ma J. ; Zhou X. X. ; Wang Z. ; Kang H. L. ; Zhang L. Q. ; Hua K. C. ; Kulig J. Design and preparation of a novel cross-linkable, high molecular weight, and bio-based elastomer by emulsion polymerization . Macromolecules , 2012 , 45 ( 17 ), 6830 - 6839 . doi: 10.1021/ma301183k http://dx.doi.org/10.1021/ma301183k
Wei T. ; Lei L. J. ; Kang H. L. ; Qiao B. ; Wang Z. ; Zhang L. Q. ; Coates P. ; Hua K. C. ; Kulig J. Tough bio-based elastomer nanocomposites with high performance for engineering applications . Adv. Eng. Mater. , 2012 , 14 ( 1-2 ), 112 - 118 . doi: 10.1002/adem.201100162 http://dx.doi.org/10.1002/adem.201100162
Kang H. L. ; Qiao B. ; Wang R. G. ; Wang Z. ; Zhang L. Q. ; Ma J. ; Coates P. Employing a novel bioelastomer to toughen polylactide . Polymer , 2013 , 54 ( 9 ), 2450 - 2458 . doi: 10.1016/j.polymer.2013.02.053 http://dx.doi.org/10.1016/j.polymer.2013.02.053
Hu X. R. ; Kang H. L. ; Li Y. ; Li M. Q. ; Wang R. G. ; Xu R. W. ; Qiao H. ; Zhang L. Q. Direct copolycondensation of biobased elastomers based on lactic acid with tunable and versatile properties . Polym. Chem. , 2015 , 6 ( 47 ), 8112 - 8123 . doi: 10.1039/c5py01332a http://dx.doi.org/10.1039/c5py01332a
Gao Y. ; Li Y. ; Hu X. R. ; Wu W. D. ; Wang Z. ; Wang R. G. ; Zhang L. Q. Preparation and properties of novel thermoplastic vulcanizate based on bio-based polyester/polylactic acid, and its application in 3D printing . Polymers , 2017 , 9 ( 12 ), 694 . doi: 10.3390/polym9120694 http://dx.doi.org/10.3390/polym9120694
Hu X. R. ; Kang H. L. ; Li Y. ; Geng Y. T. ; Wang R. G. ; Zhang L. Q. Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials . Polymer , 2017 , 108 , 11 - 20 . doi: 10.1016/j.polymer.2016.11.045 http://dx.doi.org/10.1016/j.polymer.2016.11.045
Tang S. ; Li J. ; Wang Z. ; Zhang L. Q. Design and synthesis of novel bio-based polyester elastomer with tunable oil resistance . Macromol. Rapid Commun. , 2023 , 44 ( 17 ), 2300166 . doi: 10.1002/marc.202300166 http://dx.doi.org/10.1002/marc.202300166
Zhang Q. N. ; Sun J. H. ; Yao Z. H. ; Ding X. J. ; Wang Z. ; Zhang L. Q. Synthesis and performance evaluation of low-molecular-weight biobased polyester rubber as a novel eco-friendly polymeric plasticizer for polyvinyl chloride . Front. Mater. , 2024 , 11 , 1406469 . doi: 10.3389/fmats.2024.1406469 http://dx.doi.org/10.3389/fmats.2024.1406469
Xu Y. Y. ; Zhang Q. N. ; Wang Z. ; Zhang L. Q. Synthesis of novel thermoplastic polyester elastomers with biobased amorphous polyester as the soft segment . Polym. Test. , 2023 , 124 , 108088 . doi: 10.1016/j.polymertesting.2023.108088 http://dx.doi.org/10.1016/j.polymertesting.2023.108088
Upton B. M. ; Kasko A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective . Chem. Rev. , 2016 , 116 ( 4 ), 2275 - 2306 . doi: 10.1021/acs.chemrev.5b00345 http://dx.doi.org/10.1021/acs.chemrev.5b00345
梁孝林 , 闻杰 , 杨雯迪 , 刘文毅 , 施冬健 , 陈明清 . PLA/Lignin-g-polyester生物基复合材料的制备及聚酯链段结构对性能的影响研究 . 高分子学报 , 2019 , 50 ( 2 ), 147 - 159 . doi: 10.11777/j.issn1000-3304.2018.18176 http://dx.doi.org/10.11777/j.issn1000-3304.2018.18176
Zhang G. G. ; Tian C. C. ; Chu H. Y. ; Liu J. ; Guo B. C. ; Zhang L. Q. A facile strategy to achieve vitrimer-like elastomer composites with lignin as a renewable bio-filler toward excellent reinforcement and recyclability . J. Mater. Chem. A , 2023 , 11 ( 46 ), 25356 - 25367 . doi: 10.1039/d3ta05205b http://dx.doi.org/10.1039/d3ta05205b
Keilen J. J. ; Pollak A. Lignin for reinforcing rubber . Ind. Eng. Chem. , 1947 , 39 ( 4 ), 480 - 483 . doi: 10.1021/ie50448a013 http://dx.doi.org/10.1021/ie50448a013
Eraghi Kazzaz A. ; Hosseinpour Feizi Z. ; Fatehi P. Grafting strategies for hydroxy groups of lignin for producing materials . Green Chem. , 2019 , 21 ( 21 ), 5714 - 5752 . doi: 10.1039/c9gc02598g http://dx.doi.org/10.1039/c9gc02598g
Lee J. H. ; Kim T. M. ; Choi I. G. ; Choi J. W. Phenolic hydroxyl groups in the lignin polymer affect the formation of lignin nanoparticles . Nanomaterials , 2021 , 11 ( 7 ), 1790 . doi: 10.3390/nano11071790 http://dx.doi.org/10.3390/nano11071790
Roy K. ; Debnath S. C. ; Potiyaraj P. A review on recent trends and future prospects of lignin based green rubber composites . J. Polym. Environ. , 2020 , 28 ( 2 ), 367 - 387 . doi: 10.1007/s10924-019-01626-5 http://dx.doi.org/10.1007/s10924-019-01626-5
Luo S. P. ; Cao J. Z. ; McDonald A. G. Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate- co -3-hydroxyvalerate) or polypropylene blends . Ind. Crops Prod. , 2017 , 97 , 281 - 291 . doi: 10.1016/j.indcrop.2016.12.024 http://dx.doi.org/10.1016/j.indcrop.2016.12.024
Dehne L. ; Vila C. ; Saake B. ; Schwarz K. U. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends . J. Appl. Polym. Sci. , 2017 , 134 ( 11 ), 44582 . doi: 10.1002/app.44582 http://dx.doi.org/10.1002/app.44582
Huang J. H. ; Liu W. F. ; Qiu X. Q. ; Tu Z. K. ; Li J. X. ; Lou H. M. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites . Int. J. Biol. Macromol. , 2021 , 183 , 1450 - 1458 . doi: 10.1016/j.ijbiomac.2021.04.188 http://dx.doi.org/10.1016/j.ijbiomac.2021.04.188
Yu P. ; He H. ; Jiang C. ; Jia Y. C. ; Wang D. Q. ; Yao X. J. ; Jia D. M. ; Luo Y. F. Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin . J. Appl. Polym. Sci. , 2016 , 133 ( 4 ), 42922 . doi: 10.1002/app.42922 http://dx.doi.org/10.1002/app.42922
Heidarian P. ; Kouzani A. Z. ; Kaynak A. ; Bahrami B. ; Paulino M. ; Nasri-Nasrabadi B. ; Varley R. J. Rational design of mussel-inspired hydrogels with dynamic Catecholato-Metal coordination bonds . Macromol. Rapid Commun. , 2020 , 41 ( 23 ), 2000439 . doi: 10.1002/marc.202000439 http://dx.doi.org/10.1002/marc.202000439
Liu Y. J. ; Tang Z. H. ; Wang D. ; Wu S. W. ; Guo B. C. Biomimetic design of elastomeric vitrimers with unparalleled mechanical properties, improved creep resistance and retained malleability by metal-ligand coordination . J. Mater. Chem. A , 2019 , 7 ( 47 ), 26867 - 26876 . doi: 10.1039/c9ta10909a http://dx.doi.org/10.1039/c9ta10909a
Zhang X. H. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. Enabling design of advanced elastomer with bioinspired metal-oxygen coordination . ACS Appl. Mater. Interfaces , 2016 , 8 ( 47 ), 32520 - 32527 . doi: 10.1021/acsami.6b10881 http://dx.doi.org/10.1021/acsami.6b10881
Currey, J. Sacrificial bonds heal bone . Nature , 2001 , 414 , 699 . doi: 10.1038/414699a http://dx.doi.org/10.1038/414699a
Zhou X. X. ; Guo B. C. ; Zhang L. Q. ; Hu G. H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials . Chem. Soc. Rev. , 2017 , 46 ( 20 ), 6301 - 6329 . doi: 10.1039/c7cs00276a http://dx.doi.org/10.1039/c7cs00276a
Wan H. X. ; Li S. ; Wang Y. C. ; Chen Z. D. ; He J. W. ; Li C. H. ; Liu G. X. ; Liu J. ; Wang X. D. ; Russell T. P. ; Zhang L. Q. All-polymer nanocomposites having superior strength, toughness and ultralow energy dissipation . Nano Energy , 2023 , 118 , 108925 . doi: 10.1016/j.nanoen.2023.108925 http://dx.doi.org/10.1016/j.nanoen.2023.108925
Tu Z. K. ; Liu W. F. ; Wang J. ; Qiu X. Q. ; Huang J. H. ; Li J. X. ; Lou H. M. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process . Nat. Commun. , 2021 , 12 ( 1 ), 2916 . doi: 10.1038/s41467-021-23204-x http://dx.doi.org/10.1038/s41467-021-23204-x
Li M. ; Zhu L. W. ; Xiao H. G. ; Shen T. ; Tan Z. T. ; Zhuang W. ; Xi Y. B. ; Ji X. X. ; Zhu C. J. ; Ying H. J. Design of a lignin-based versatile bioreinforcement for high-performance natural rubber composites . ACS Sustainable Chem. Eng. , 2022 , 10 ( 24 ), 8031 - 8042 . doi: 10.1021/acssuschemeng.2c02113 http://dx.doi.org/10.1021/acssuschemeng.2c02113
Li C. J. ; Yuan Z. ; Ye L. Facile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience . Compos. Part A Appl. Sci. Manuf. , 2019 , 126 , 105580 . doi: 10.1016/j.compositesa.2019.105580 http://dx.doi.org/10.1016/j.compositesa.2019.105580
Chen Y. K. ; Xu C. H. ; Liang X. Q. ; Cao L. M. In situ reactive compatibilization of polypropylene/ethylene-propylene-diene monomer thermoplastic vulcanizate by zinc dimethacrylate via peroxide-induced dynamic vulcanization . J. Phys. Chem. B , 2013 , 117 ( 36 ), 10619 - 10628 . doi: 10.1021/jp404427w http://dx.doi.org/10.1021/jp404427w
Antony P. ; Bandyopadhyay S. ; De S. K. Synergism in properties of ionomeric polyblends based on zinc salts of carboxylated nitrile rubber and poly(ethylene-co-acrylic acid) . Polymer , 2000 , 41 ( 2 ), 787 - 793 . doi: 10.1016/s0032-3861(99)00037-3 http://dx.doi.org/10.1016/s0032-3861(99)00037-3
Wang J. Y. ; Li Y. ; Qiu X. Q. ; Liu D. ; Yang D. J. ; Liu W. F. ; Qian Y. Dissolution of lignin in green urea aqueous solution . Appl. Surf. Sci. , 2017 , 425 , 736 - 741 . doi: 10.1016/j.apsusc.2017.06.220 http://dx.doi.org/10.1016/j.apsusc.2017.06.220
Shi X. Y. ; Sun S. H. ; Zhao A. ; Zhang H. M. ; Zuo M. ; Song Y. H. ; Zheng Q. Influence of carbon black on the Payne effect of filled natural rubber compounds . Compos. Sci. Technol. , 2021 , 203 , 108586 . doi: 10.1016/j.compscitech.2020.108586 http://dx.doi.org/10.1016/j.compscitech.2020.108586
Liu J. ; Liu J. ; Wang S. ; Huang J. ; Wu S. W. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability . J. Mater. Chem. A , 2017 , 5 ( 48 ), 25660 - 25671 . doi: 10.1039/c7ta08255j http://dx.doi.org/10.1039/c7ta08255j
Jiang C. ; He H. ; Jiang H. ; Ma L. ; Jia D. M. Nano-lignin filled natural rubber composites: preparation and characterization . Express Polym. Lett. , 2013 , 7 ( 5 ), 480 - 493 . doi: 10.3144/expresspolymlett.2013.44 http://dx.doi.org/10.3144/expresspolymlett.2013.44
Richard C. ; Walter N. Metallic coagents for rubber-to-metal adhesion . Rubber World , 1995 , 212 ( 6 ): 18 - 20 .
Zhang X. H. ; Tang Z. H. ; Huang J. ; Lin T. F. ; Guo B. C. Strikingly improved toughness of nonpolar rubber by incorporating sacrificial network at small fraction . J. Polym. Sci. Part B Polym. Phys. , 2016 , 54 ( 8 ), 781 - 786 . doi: 10.1002/polb.23980 http://dx.doi.org/10.1002/polb.23980
0
浏览量
74
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构