浏览全部资源
扫码关注微信
昆明理工大学化学工程学院 昆明 650504
E-mail: zhl419wsm@163.com
收稿日期:2024-12-20,
录用日期:2025-02-03,
网络出版日期:2025-03-28,
纸质出版日期:2025-05-20
移动端阅览
冯光娜, 李可歆, 陈涛, 赵海利. 结构色可控光子晶体水凝胶的制备及多重响应特性. 高分子学报, 2025, 56(5), 822-831
Feng, G. N.; Li, K. X.; Chen, T.; Zhao, H. L. Fabrication of photonic crystal hydrogels with controllable structural colors and multi-stimuli responsiveness. Acta Polymerica Sinica, 2025, 56(5), 822-831
冯光娜, 李可歆, 陈涛, 赵海利. 结构色可控光子晶体水凝胶的制备及多重响应特性. 高分子学报, 2025, 56(5), 822-831 DOI: 10.11777/j.issn1000-3304.2024.24301. CSTR: 32057.14.GFZXB.2025.7350.
Feng, G. N.; Li, K. X.; Chen, T.; Zhao, H. L. Fabrication of photonic crystal hydrogels with controllable structural colors and multi-stimuli responsiveness. Acta Polymerica Sinica, 2025, 56(5), 822-831 DOI: 10.11777/j.issn1000-3304.2024.24301. CSTR: 32057.14.GFZXB.2025.7350.
制备了一种具有温度和压力双重响应特性的反蛋白石结构光子晶体水凝胶膜. 首先合成了具有不同粒径的SiO
2
纳米微球,然后通过垂直沉积法和牺牲模板法依次制备具有蛋白石结构的SiO
2
光子晶体模板和反蛋白石结构的光子晶体水凝胶膜. 采用扫描电子显微镜(SEM)、光学显微镜及光谱仪对所制备光子晶体模板和水凝胶膜的微观结构、表面结构色和反射光谱进行表征,结果表明所制备的光子晶体模板和水凝胶膜呈现出有序的六方体结构且通过改变SiO
2
纳米微球的粒径可以实现对光子晶体水凝胶膜表面结构色的有效调控. 得益于壳聚糖的温度敏感特性和反蛋白石多孔结构,光子晶体水凝胶膜展现出对温度和压力刺激的双重响应特性;多壁碳纳米管(MWCNTs)良好的导电性使得光子晶体水凝胶膜在拉伸、压缩和弯曲作用下不仅能够呈现出结构色变化,还能检测到明显的相对电阻变化. 本文所制备的光子晶体水凝胶膜对温度和外力的双重响应特性及双信号输出能力使其在高性能、多功能传感领域展现出巨大的应用前景.
In advanced materials research
the investigation of intelligent materials with diverse properties has emerged as a significant focus. Here
we present the successful preparation of an inverse opal photonic crystal (PC) hydrogel film that exhibits remarkable responsiveness to both temperature and pressure. Silica (SiO
2
) nanospheres of various sizes were initially synthesized using the well-known Stöber method. The size of the microspheres was controlled by adjusting the concentration of TEOS and the reaction temperature during th
e synthesis process. Subsequently
the SiO
2
PC template with an opal structure and the PC hydrogel film with an inverse opal structure were sequentially fabricated through the vertical deposition method and the sacrificial template method. Scanning electron microscopy (SEM)
optical microscopy
and fiber optic spectrometry were employed to characterize the microstructures
structural colors
and reflection spectra of both the SiO
2
PC template and the PC hydrogel film.The results showed that both the SiO₂ PC template and the PC hydrogel film had an ordered hexagonal structure. The structural color of the hydrogel film could be effectively regulated by changing the size of the SiO
2
nanospheres. Thanks to the temperature-sensitive nature of chitosan within the hydrogel and the unique inverse opal structure
the hydrogel film demonstrated dual-response characteristics to temperature and pressure. Moreover
the incorporation of multi-walled carbon nanotubes (MWCNTs) endowed the film with excellent conductivity
allowing it to not only show visible color changes but also provide electrical signal feedback during mechanical deformations. The developed PC hydrogel film
characterized by dual stimuli responsiveness and dual signal output
demonstrates significant potential for applications in high-performance and multifunctional sensors.
Qin M. ; Li J. S. ; Song Y. L. Toward high sensitivity: Perspective on colorimetric photonic crystal sensors . Anal. Chem. , 2022 , 94 ( 27 ), 9497 - 9507 . doi: 10.1021/acs.analchem.2c01804 http://dx.doi.org/10.1021/acs.analchem.2c01804
侯慧鹏 , 梁阿新 , 汤波 , 刘宗坤 , 罗爱芹 . 光子晶体生化传感器的构建及应用 . 化学进展 , 2021 , 33 ( 7 ), 1126 - 1137 . doi: 10.7536/PC200711 http://dx.doi.org/10.7536/PC200711
Hong W. ; Yuan Z. K. ; Chen X. D. Structural color materials for optical anticounterfeiting . Small , 2020 , 16 ( 16 ), 1907626 . doi: 10.1002/smll.201907626 http://dx.doi.org/10.1002/smll.201907626
Wu Y. ; Wang Y. ; Zhang S. F. ; Wu S. L. Artificial chameleon skin with super-sensitive thermal and mechanochromic response . ACS Nano , 2021 , 15 ( 10 ), 15720 - 15729 . doi: 10.1021/acsnano.1c05612 http://dx.doi.org/10.1021/acsnano.1c05612
Wang Y. ; Guo J. H. ; Sun L. Y. ; Chen H. X. ; Zhao Y. J. Dual-responsive graphene hybrid structural color hydrogels as visually electrical skins . Chem. Eng. J. , 2021 , 415 , 128978 . doi: 10.1016/j.cej.2021.128978 http://dx.doi.org/10.1016/j.cej.2021.128978
Wu S. L. ; Nan J. J. ; Wu Y. ; Meng Z. P. ; Zhang S. F. Low-angle-dependent anticounterfeiting label decoded by alcohol tissue wiping based on a multilayer photonic crystal structure . ACS Appl. Mater. Interfaces , 2022 , 14 ( 23 ), 27048 - 27055 . doi: 10.1021/acsami.2c04901 http://dx.doi.org/10.1021/acsami.2c04901
Hu C. S. ; Zhou J. Y. ; Zhang J. ; Zhao Y. H. ; Xie C. Y. ; Yin W. ; Xie J. ; Li H. Y. ; Xu X. ; Zhao L. ; Qin M. ; Li J. S. A structural color hydrogel for diagnosis of halitosis and screening of periodontitis . Mater. Horiz. , 2024 , 11 ( 2 ), 519 - 530 . doi: 10.1039/d3mh01563g http://dx.doi.org/10.1039/d3mh01563g
Lu D. F. ; Qin M. ; Zhao Y. H. ; Li H. X. ; Luo L. B. ; Ding C. M. ; Cheng P. ; Su M. ; Li H. Y. ; Song Y. L. ; Li J. S. Supramolecular photonic hydrogel for high-sensitivity alkaline phosphatase detection via synergistic driving force . Small , 2023 , 19 ( 12 ), 2206461 . doi: 10.1002/smll.202206461 http://dx.doi.org/10.1002/smll.202206461
Ho T. C. ; Chang C. C. ; Chan H. P. ; Chung T. W. ; Shu C. W. ; Chuang K. P. ; Duh T. H. ; Yang M. H. ; Tyan Y. C. Hydrogels: properties and applications in biomedicine . Molecules , 2022 , 27 ( 9 ), 2902 . doi: 10.3390/molecules27092902 http://dx.doi.org/10.3390/molecules27092902
Liu F. F. ; Zhang S. F. ; Meng Y. ; Tang B. T. Thermal responsive photonic crystal achieved through the control of light path guided by phase transition . Small , 2020 , 16 ( 34 ), 2002319 . doi: 10.1002/smll.202002319 http://dx.doi.org/10.1002/smll.202002319
Wu Y. ; Sun R. K. ; Han Y. Q. ; Zhang S. F. ; Wu S. L. Ultrathin photonic crystal film with supersensitive thermochromism in air . Chem. Eng. J. , 2023 , 451 , 139075 . doi: 10.1016/j.cej.2022.139075 http://dx.doi.org/10.1016/j.cej.2022.139075
Yan D. ; Lu W. ; Qiu L. L. ; Meng Z. H. ; Qiao Y. Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels . RSC Adv. , 2019 , 9 ( 37 ), 21202 - 21205 . doi: 10.1039/c9ra02768h http://dx.doi.org/10.1039/c9ra02768h
Liang H. L. ; Bay M. M. ; Vadrucci R. ; Barty-King C. H. ; Peng J. L. ; Baumberg J. J. ; De Volder M. F. L. ; Vignolini S. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates . Nat. Commun. , 2018 , 9 ( 1 ), 4632 . doi: 10.1038/s41467-018-07048-6 http://dx.doi.org/10.1038/s41467-018-07048-6
Wei B. R. ; Zhang Z. K. ; Yang D. P. ; Ma D. K. ; Zhang Y. Q. ; Huang S. M. Lattice transformation-induced retroreflective structural colors . ACS Appl. Mater. Interfaces , 2023 , 15 ( 40 ), 47350 - 47358 . doi: 10.1021/acsami.3c07980 http://dx.doi.org/10.1021/acsami.3c07980
He J. ; Shen X. Q. ; Li H. T. ; Yao Y. ; Guo J. ; Wang C. C. Scalable and sensitive humidity-responsive polymer photonic crystal films for anticounterfeiting application . ACS Appl. Mater. Interfaces , 2022 , 14 ( 23 ), 27251 - 27261 . doi: 10.1021/acsami.2c06273 http://dx.doi.org/10.1021/acsami.2c06273
Mardani H. ; Roghani-Mamaqani H. ; Shahi S. ; Salami-Kalajahi M. Stimuli-responsive block copolymers as pH chemosensors by fluorescence emission intensification mechanism . Eur. Polym. J. , 2022 , 162 , 110928 . doi: 10.1016/j.eurpolymj.2021.110928 http://dx.doi.org/10.1016/j.eurpolymj.2021.110928
Wu Y. ; Shen Y. ; Han J. ; Théato P. ; Le X. ; Chen T. Brush-like polymeric gels enabled photonic crystals toward ultrasensitive cosolvent chromism . Angew. Chem. , 2024 , 136 ( 49 ): e202414136 . doi: 10.1002/ange.202418009 http://dx.doi.org/10.1002/ange.202418009
Fu Y. ; Zhao H. ; Wang Y. M. ; Chen D. ; Yu Z. H. ; Zheng J. Q. ; Sun S. ; Cai W. H. ; Zhou H. M. Reversible photochromic photonic crystal device with dual structural colors . ACS Appl. Mater. Interfaces , 2022 , 14 ( 25 ), 29070 - 29076 . doi: 10.1021/acsami.2c03771 http://dx.doi.org/10.1021/acsami.2c03771
Wang Y. ; Yu Y. R. ; Guo J. H. ; Zhang Z. H. ; Zhang X. X. ; Zhao Y. J. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics . Adv. Funct. Mater. , 2020 , 30 ( 32 ), 2000151 . doi: 10.1002/adfm.202000151 http://dx.doi.org/10.1002/adfm.202000151
Deng J. ; Fu S. G. ; Zhong Y. F. ; Jiang M. ; Chen T. ; Zhao H. L. Photonic crystal hydrogels fabricated from nanoparticles of Fe 3 O 4 /SiO2 with programmable colors through photopolymerization for applications as anticounterfeiting applications. ACS Appl. Nano Mater. , 2024 , 7 ( 7 ), 7916 - 7924 . doi: 10.1021/acsanm.4c00504 http://dx.doi.org/10.1021/acsanm.4c00504
Liang J. H. ; Liu J. H. ; Zhu L. Q. ; Gao S. Y. ; Liu Y. Y. ; Teng X. Y. ; Wang R. ; Wang X. J. ; Wang S. J. ; Wang J. Q. ; Xia Y. Q. Self-healing chameleon skin functioning in the air environments . ACS Appl. Polym. Mater. , 2023 , 5 ( 1 ), 320 - 328 . doi: 10.1021/acsapm.2c01529 http://dx.doi.org/10.1021/acsapm.2c01529
Shu Z. X. ; Sun X. N. ; Xu X. Y. ; Qin M. ; Li J. S. Colloidal photonic crystals towards biological applications . J. Mater. Chem. B , 2024 , 12 ( 35 ), 8488 - 8504 . doi: 10.1039/d4tb01325e http://dx.doi.org/10.1039/d4tb01325e
Meng Z. P. ; Wu Y. ; Ren J. ; Li X. Y. ; Zhang S. F. ; Wu S. L. Upconversion nanoparticle-integrated bilayer inverse opal photonic crystal film for the triple anticounterfeiting . ACS Appl. Mater. Interfaces , 2022 , 14 ( 10 ), 12562 - 12570 . doi: 10.1021/acsami.1c25059 http://dx.doi.org/10.1021/acsami.1c25059
Wang Y. ; Cheng Y. ; Cai L. J. ; Chen H. X. ; Zhao Y. J. Phase separation derived anisotropic adhesive structural color hydrogel films for flexible electronics . Adv. Funct. Mater. , 2024 , 34 ( 46 ), 2407848 . doi: 10.1002/adfm.202407848 http://dx.doi.org/10.1002/adfm.202407848
Zhou C. T. ; Qi Y. ; Zhang S. F. ; Niu W. B. ; Wu S. L. ; Ma W. ; Tang B. T. Fast water-response double-inverse opal films with brilliant structural color . Chem. Eng. J. , 2021 , 426 , 131213 . doi: 10.1016/j.cej.2021.131213 http://dx.doi.org/10.1016/j.cej.2021.131213
Li G. ; Huang K. X. ; Deng J. ; Guo M. X. ; Cai M. K. ; Zhang Y. ; Guo C. F. Highly conducting and stretchable double-network hydrogel for soft bioelectronics . Adv. Mater. , 2022 , 34 ( 15 ), 2200261 . doi: 10.1002/adma.202200261 http://dx.doi.org/10.1002/adma.202200261
Wu Q. ; Wei J. J. ; Xu B. ; Liu X. H. ; Wang H. B. ; Wang W. ; Wang Q. G. ; Liu W. G. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability . Sci. Rep. , 2017 , 7 , 41566 . doi: 10.1038/srep41566 http://dx.doi.org/10.1038/srep41566
Fu F. F. ; Chen Z. Y. ; Zhao Z. ; Wang H. ; Shang L. R. ; Gu Z. Z. ; Zhao Y. J. Bio-inspired self-healing structural color hydrogel . Proc. Natl. Acad. Sci. USA , 2017 , 114 ( 23 ), 5900 - 5905 . doi: 10.1073/pnas.1703616114 http://dx.doi.org/10.1073/pnas.1703616114
Wang L. L. ; Zhao Z. Q. ; Dong J. H. ; Li D. W. ; Dong W. H. ; Li H. X. ; Zhou Y. Q. ; Liu Q. S. ; Deng B. Y. Mussel-inspired multifunctional hydrogels with adhesive, self-healing, antioxidative, and antibacterial activity for wound healing . ACS Appl. Mater. Interfaces , 2023 , 15 ( 13 ), 16515 - 16525 . doi: 10.1021/acsami.3c01065 http://dx.doi.org/10.1021/acsami.3c01065
Zhang Z. K. ; Wei B. R. ; Hu Y. ; Yang D. P. ; Ma D. K. ; Huang S. M. Extraordinary sensitive mechanochromic hydrogels for visually detecting ultrasmall pressure . Cell Rep. Phys. Sci. , 2023 , 4 , 101387 . doi: 10.1016/j.xcrp.2023.101387 http://dx.doi.org/10.1016/j.xcrp.2023.101387
Isapour G. ; Lattuada M. Bioinspired stimuli-responsive color-changing systems . Adv. Mater. , 2018 , 30 ( 19 ), 1707069 . doi: 10.1002/adma.201707069 http://dx.doi.org/10.1002/adma.201707069
张连超 , 邱丽莉 , 芦薇 , 于颖杰 , 孟子晖 , 王树山 , 薛敏 , 刘文芳 . 蛋白石型光子晶体红外隐身材料的制备 . 物理学报 , 2017 , 66 ( 8 ), 158 - 164 . doi: 10.7498/aps.66.084208 http://dx.doi.org/10.7498/aps.66.084208
Wang H. ; Chen X. D. ; Xie G. ; Bi D. H. ; Du S. ; Li M. M. ; Zhang L. B. ; Zhu J. T. Inverse opal photonic hydrogels for blue-edge slow photon-enhanced photodynamic antibacterial therapy . Adv. Funct. Mater. , 2023 , 33 ( 45 ), 2306025 . doi: 10.1002/adfm.202306025 http://dx.doi.org/10.1002/adfm.202306025
Yang X. X. ; Chai L. J. ; Huang Z. ; Zhu B. ; Liu H. Y. ; Shi Z. T. ; Wu Y. ; Guo L. ; Xue L. J. ; Lei Y. F. Smart photonic crystal hydrogels for visual glucose monitoring in diabetic wound healing . J. Nanobiotechnology , 2024 , 22 ( 1 ), 618 . doi: 10.1186/s12951-024-02905-7 http://dx.doi.org/10.1186/s12951-024-02905-7
Qi Y. ; Song L. J. ; Zhou C. T. ; Zhang S. F. Hydration activates dual-confined shape-memory effects of cold-reprogrammable photonic crystals . Adv. Mater. , 2023 , 35 ( 16 ), 2210753 . doi: 10.1002/adma.202210753 http://dx.doi.org/10.1002/adma.202210753
李菁 , 唐新军 , 黄勇 . 基于反蛋白石结构的功能型材料制备及其在水处理领域的研究进展 . 复合材料学报 , 2024 , 41 ( 8 ), 4004 - 4025 . doi: 10.13801/j.cnki.fhclxb.20240315.001 http://dx.doi.org/10.13801/j.cnki.fhclxb.20240315.001
李会鹏 , 孙新宇 , 赵华 , 蔡天凤 , 刘泽田 , 刘源 . 反蛋白石结构光催化剂的制备与应用进展 . 分子催化 , 2021 , 35 ( 1 ), 65 - 75 .
Fernandes R. S. ; Raimundo I. M. ; Pimentel M. F. Revising the synthesis of stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size . Colloids Surf. A Physicochem. Eng. Aspects , 2019 , 577 , 1 - 7 . doi: 10.1016/j.colsurfa.2019.05.053 http://dx.doi.org/10.1016/j.colsurfa.2019.05.053
程晨 , 杜仕国 , 鲁彦玲 . 单分散二氧化硅微球的制备及其生长趋势 . 中国粉体技术 , 2018 , 24 ( 5 ), 28 - 34 . doi: 10.13732/j.issn.1008-5548.2018.05.005 http://dx.doi.org/10.13732/j.issn.1008-5548.2018.05.005
杜蘅 , 李昕 , 关芳兰 , 栾筱婉 , 孙爱林 , 杨天赐 . 纳米SiO 2 微球的粒径调控及影响因素研究 . 化工新型材料 , 2022 , 50 ( 9 ), 174 - 178 .
0
浏览量
154
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构