浏览全部资源
扫码关注微信
1.中国科学技术大学近代力学系 中国科学院材料力学行为与设计重点实验室 合肥 230026
2.中国科学技术大学核科学技术学院 国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学重点实验室 合肥 230026
[ "陈威,男,1989年生. 2011年本科毕业于中国科学技术大学,2016年年博士毕业于美国阿克伦大学,2016~2018年在同济大学开展博士后研究,2018年加入中国科学技术大学同步辐射实验室开展工作,2024年获国家基金委优秀青年基金资助. 主要研究方向是发展固体核磁共振和同步辐射原位技术研究高分子加工." ]
收稿日期:2024-12-30,
录用日期:2025-02-08,
网络出版日期:2025-04-17,
移动端阅览
魏晓颖, 程宏, 李窈, 陈威. 聚乙烯醇流延干燥成膜数值模拟研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.24315
Wei, X. Y.; Cheng, H.; Li, Y.; Chen, W. Numerical modeling of solvent evaporation in poly(vinyl alcohol) film formation during solution casting. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.24315
魏晓颖, 程宏, 李窈, 陈威. 聚乙烯醇流延干燥成膜数值模拟研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.24315 DOI: CSTR: 32057.14.GFZXB.2025.7358.
Wei, X. Y.; Cheng, H.; Li, Y.; Chen, W. Numerical modeling of solvent evaporation in poly(vinyl alcohol) film formation during solution casting. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.24315 DOI: CSTR: 32057.14.GFZXB.2025.7358.
利用COMSOL软件开展了风场、温度场和浓度场等多物理场耦合下的聚乙烯醇(Poly(vinyl alcohol)
PVA)水溶液在快速干燥阶段成膜机理研究. 结合菲克定律、自由体积理论与Flory-Huggins理论,建立了简化的流动-传热-传质多物理场耦合下薄膜干燥成型模型. 基于不同空气风速(1.5~2.5 m/s)下PVA水溶液干燥称重实验数据,修正了边界层理论计算的传质系数. 研究结果表明薄膜与空气接触面的压强值变化很小,由于热风干燥的佩克莱数(Pe)较大,PVA水溶液在快速干燥阶段的扩散过程由对流主导. 修正后的传质系数在中等风速下(2.0 m/s)最大,表明传质系数与风速之间存在非单调关系,这与多物理场对PVA成膜过程中结晶、玻璃化转变和凝胶化等相变行为及其在厚度方向结构与组分不均匀性密切相关. 本文实验和数值模拟揭示的多物理场对聚合物溶液干燥速率影响机制,可为工业上PVA偏光膜基膜湿法流延成膜工艺参数优化提供理论指导.
In this study
the drying process of poly(vinyl alcohol) (PVA) aqueous solution under the coupled effects of wind field
temperature field
and concentration field was investigated using COMSOL software. A simplified multi-physics coupling model for flow
heat
and mass transfer was developed by integrating Fick's law
the free volume theory
and the Flory-Huggins theory. The mass transfer coefficient
initially calculated using boundary layer theory
was subsequently refined based on experimental data obtained from drying and weighing PVA aqueous solutions at varying air speeds (1.5-2.5 m/s). The findings reveal that the pressure at the interface between the film and the air undergoes minimal changes. This is attributed to the high Peclet number (Pe) calculated for hot air drying
indicating that the diffusion process of the PVA aqueous solution during the rapid drying phase is predominantly governed by convection. Furthermore
the modified mass transfer coefficient reaches its peak at an intermediate wind speed of 2.0 m/s
suggesting a nonmonotonic relationship between the mass transfer coefficient and wind speed. Through a combination of experimental methods and numerical simulations
this study elucidates the mechanism by which wind speed influences the drying rate of polymer solutions. The insights gained provide a valuable foundation for optimizing the operational conditions for the drying and film formation of PVA aqueous solutions in engineering applications.
Gaume J. ; Wong-Wah-Chung P. ; Rivaton A. ; Thérias S. ; Gardette J. L. Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation . RSC Adv. , 2011 , 1 ( 8 ), 1471 - 1481 . doi: 10.1039/c1ra00350j http://dx.doi.org/10.1039/c1ra00350j
Abral H. ; Ariksa J. ; Mahardika M. ; Handayani D. ; Aminah I. ; Sandrawati N. ; Sapuan S. M. ; Ilyas R. A. Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber . Polym. Test. , 2020 , 81 , 106186 . doi: 10.1016/j.polymertesting.2019.106186 http://dx.doi.org/10.1016/j.polymertesting.2019.106186
DeMerlis C. C. ; Schoneker D. R. Review of the oral toxicity of polyvinyl alcohol (PVA) . Food Chem. Toxicol. , 2003 , 41 ( 3 ), 319 - 326 . doi: 10.1016/s0278-6915(02)00258-2 http://dx.doi.org/10.1016/s0278-6915(02)00258-2
Alexandre N. ; Ribeiro J. ; Gärtner A. ; Pereira T. ; Amorim I. ; Fragoso J. ; Lopes A. ; Fernandes J. ; Costa E. ; Santos-Silva A. ; Rodrigues M. ; Santos J. D. ; Maurício A. C. ; Luís A. L. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting: in vitro and in vivo studies . J. Biomed. Mater. Res. Part A , 2014 , 102 ( 12 ), 4262 - 4275 .
Rivera-Hernández G. ; Antunes-Ricardo M. ; Martínez-Morales P. ; Sánchez M. L. Polyvinyl alcohol based-drug delivery systems for cancer treatment . Int. J. Pharm. , 2021 , 600 , 120478 . doi: 10.1016/j.ijpharm.2021.120478 http://dx.doi.org/10.1016/j.ijpharm.2021.120478
Vrana N. E. ; O'Grady A. ; Kay E. ; Cahill P. A. ; McGuinness G. B. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique . J. Tissue Eng. Regen. Med. , 2009 , 3 ( 7 ), 567 - 572 . doi: 10.1002/term.193 http://dx.doi.org/10.1002/term.193
Kamoun E. A. ; Kenawy E. S. ; Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings . J. Adv. Res. , 2017 , 8 ( 3 ), 217 - 233 . doi: 10.1016/j.jare.2017.01.005 http://dx.doi.org/10.1016/j.jare.2017.01.005
Tripathi S. ; Mehrotra G. K. ; Dutta P. K. Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications . Int. J. Biol. Macromol. , 2009 , 45 ( 4 ), 372 - 376 . doi: 10.1016/j.ijbiomac.2009.07.006 http://dx.doi.org/10.1016/j.ijbiomac.2009.07.006
Tashiro K. ; Kitai H. ; Saharin S. M. ; Shimazu A. ; Itou T. Quantitative crystal structure analysis of poly(vinyl alcohol)-iodine complexes on the basis of 2D X-ray diffraction, Raman spectra, and computer simulation techniques . Macromolecules , 2015 , 48 ( 7 ), 2138 - 2148 . doi: 10.1021/acs.macromol.5b00119 http://dx.doi.org/10.1021/acs.macromol.5b00119
Tubbs R. ; Inskip H. ; Subramanian P. Relationships between structure and properties of polyvinyl alcohol and vinyl alcohol copolymers . J. Polym. Sci. , Part A, 1965 , 3 ( 4181 ).
李窈 ; 程宏 ; 谢佳羽 ; 张前磊 ; 叶克 ; 王道亮 ; 陈威 . 新型显示用聚乙烯醇光学膜的结构与性能研究进展 . 高分子通报 , doi: 10.14028/j.cnki.1003-3726.2024.24.250 http://dx.doi.org/10.14028/j.cnki.1003-3726.2024.24.250 .
Vinjamur M. ; Cairncross R. A. A high airflow drying experimental set-up to study drying behavior of polymer solvent coatings . Dry. Technol. , 2001 , 19 ( 8 ), 1591 - 1612 . doi: 10.1081/drt-100107261 http://dx.doi.org/10.1081/drt-100107261
Kinnan T. ; Kondo Y. ; Aoki M. ; Inasawa S. How do drying methods affect quality of films? Drying of polymer solutions under hot-air flow or infrared heating with comparable evaporation rates . Dry. Technol. , 2022 , 40 ( 3 ), 653 - 664 . doi: 10.1080/07373937.2020.1825291 http://dx.doi.org/10.1080/07373937.2020.1825291
Cheng H. ; Zhao Y. L. ; Wei X. Y. ; Zhang Q. L. ; Yang E. J. ; Xiong Y. Q. ; Zhu J. H. ; Wu Z. S. ; Chen J. G. ; Chen W. Supercooling and solvent depletion-driven poly(vinyl alcohol) film formation mechanism as elucidated by In situ synchrotron radiation X-ray scattering . Macromolecules , 2024 , 57 ( 4 ), 1569 - 1580 . doi: 10.1021/acs.macromol.3c02640 http://dx.doi.org/10.1021/acs.macromol.3c02640
Fu Z.-Z. ; He W. ; Yao Y. H. ; Qiu Z. J. ; Chen H. ; Li C.-X. ; Wang K. ; Zhang Q. ; Kwok R. T. K. ; Tang B. Z. ; Fu Q. Pursuing phase transitions of a concentrated polymer solution by in situ fluorescence measurements based on aggregation-induced emission . J. Phys. Chem. Lett. , 2022 , 13 ( 42 ), 9855 - 9861 . doi: 10.1021/acs.jpclett.2c02741 http://dx.doi.org/10.1021/acs.jpclett.2c02741
Li C. X. ; Chen H. ; Fu Z. Z. ; Zhang Q. ; Wang K. ; Fu Q. Exploring formation rationale of skin-core heterogeneity during PVA solutions evaporation by laser-induced fluorescence analysis . Polymer , 2021 , 224 , 123759 . doi: 10.1016/j.polymer.2021.123759 http://dx.doi.org/10.1016/j.polymer.2021.123759
Li Y. ; Liu X. ; Lv D. ; Hou S. ; Yu X. ; Han Y. Suppression of the skin-core structure of poly(vinyl alcohol) films by adding urea/diethanolamine to improve the mechanical and optical properties . Macromolecules , 2024 , 57 ( 13 ), 6109 - 6122 . doi: 10.1021/acs.macromol.4c00742 http://dx.doi.org/10.1021/acs.macromol.4c00742
Edwards D. A. An asymptotic analysis of polymer desorption and skinning . Macromol. Theory Simul. , 1999 , 8 ( 1 ), 10 - 14 . doi: 10.1002/(sici)1521-3919(19990101)8:1<10::aid-mats10>3.0.co;2-q http://dx.doi.org/10.1002/(sici)1521-3919(19990101)8:1<10::aid-mats10>3.0.co;2-q
Hadj Romdhane I. ; Price P. E. ; Miller C. A. ; Benson P. T. ; Wang S. Drying of glassy polymer films . Ind. Eng. Chem. Res. , 2001 , 40 ( 14 ), 3065 - 3075 . doi: 10.1021/ie001110h http://dx.doi.org/10.1021/ie001110h
Vrentas J. S. ; Vrentas C. M. Sorption in glassy polymers . Macromolecules , 1991 , 24 ( 9 ), 2404 - 2412 . doi: 10.1021/ma00009a043 http://dx.doi.org/10.1021/ma00009a043
Vrentas J. S. ; Liu H. T. ; Duda J. L. Estimation of diffusion coefficients for trace amounts of solvents in glassy and molten polymers . J. Appl. Polym. Sci. , 1980 , 25 ( 7 ), 1297 - 1310 . doi: 10.1002/app.1980.070250704 http://dx.doi.org/10.1002/app.1980.070250704
Vrentas J. S. ; Vrentas C. M. Diffusion in glassy polymers . J. Polym. Sci. Part B Polym. Phys. , 2003 , 41 ( 8 ), 785 - 788 . doi: 10.1002/polb.10433 http://dx.doi.org/10.1002/polb.10433
Wang B. G. ; Yamaguchi T. ; Nakao S. I. Solvent diffusion in amorphous glassy polymers . J. Polym. Sci. Part B Polym. Phys. , 2000 , 38 ( 6 ), 846 - 856 . doi: 10.1002/(sici)1099-0488(20000315)38:6<846::aid-polb5>3.0.co;2-b http://dx.doi.org/10.1002/(sici)1099-0488(20000315)38:6<846::aid-polb5>3.0.co;2-b
Bhargava C. K. ; Arya R. K. Design of binary polymeric coatings for minimizing the residual solvent, Part I: Experimentation . Dry. Technol. , 2015 , 33 ( 1 ), 92 - 102 . doi: 10.1080/07373937.2014.936557 http://dx.doi.org/10.1080/07373937.2014.936557
Bouyer D. ; M'Barki O. ; Pochat-Bohatier C. ; Faur C. ; Petit E. ; Guenoun P. Modeling the membrane formation of novel PVA membranes for predicting the composition path and their final morphology . AlChE. J. , 2017 , 63 ( 7 ), 3035 - 3047 . doi: 10.1002/aic.15670 http://dx.doi.org/10.1002/aic.15670
Hennessy M. G. ; Ferretti G. L. ; Cabral J. T. ; Matar O. K. A minimal model for solvent evaporation and absorption in thin films . J. Colloid Interface Sci. , 2017 , 488 , 61 - 71 . doi: 10.1016/j.jcis.2016.10.074 http://dx.doi.org/10.1016/j.jcis.2016.10.074
Wong S. S. ; Altinkaya S. A. ; Mallapragada S. K. Multi-zone drying schemes for lowering the residual solvent content during multi-component drying of semicrystalline polymers . Dry. Technol. , 2007 , 25 ( 6 ), 985 - 992 . doi: 10.1080/07373930701396741 http://dx.doi.org/10.1080/07373930701396741
Wong S. S. ; Altınkaya S. A. ; Mallapragada S. K. Drying of semicrystalline polymers: mathematical modeling and experimental characterization of poly(vinyl alcohol) films . Polymer , 2004 , 45 ( 15 ), 5151 - 5161 . doi: 10.1016/j.polymer.2004.05.037 http://dx.doi.org/10.1016/j.polymer.2004.05.037
Zeng S. L. ; Li L. ; Wang Q. Structure-property correlation of polyvinyl alcohol films fabricated by different processing methods . Polym. Test. , 2023 , 126 , 108143 . doi: 10.1016/j.polymertesting.2023.108143 http://dx.doi.org/10.1016/j.polymertesting.2023.108143
Sharma J. ; Tewari K. ; Arya R. K. Diffusion in polymeric systems-a review on free volume theory . Prog. Org. Coat. , 2017 , 111 , 83 - 92 . doi: 10.1016/j.porgcoat.2017.05.004 http://dx.doi.org/10.1016/j.porgcoat.2017.05.004
Andersson C. Flory-Huggins theory applied in atmospheric aerosol modelling . Stockholm University , 2008 . doi: 10.1007/springerreference_211238 http://dx.doi.org/10.1007/springerreference_211238
Ono T. ; Suzuki D. ; Sato K. ; Ono N. Influence of fluid motion on evaporation in drying process and estimation of the evaporation rate . Seikei-Kakou , 2021 , 33 ( 4 ), 135 - 141 . doi: 10.4325/seikeikakou.33.135 http://dx.doi.org/10.4325/seikeikakou.33.135
Parrouffe J. M. ; Dostie M. ; Navarri P. ; Andrieu J. ; Mujumdar A. S. Heat and mass transfer relationship in combined infrared and convective drying . Dry. Technol. , 1997 , 15 ( 2 ), 399 - 425 . doi: 10.1080/07373939708917239 http://dx.doi.org/10.1080/07373939708917239
Dias B. S. ; Navalho J. E. P. ; Pereira J. C. F. Multi-scale modeling and simulation of IR radiative drying for coil coating processes . Dry. Technol. , 2022 , 40 ( 16 ), 3466 - 3482 . doi: 10.1080/07373937.2022.2055055 http://dx.doi.org/10.1080/07373937.2022.2055055
Edeleva M. ; Arraez F. J. ; Wu Y. Y. ; Xie L. ; Figueira F. L. ; Marien Y. W. ; Zhou Y. N. ; Luo Z. H. ; van Steenberge P. H. M. ; D'hooge D. R. Multiscale theoretical tools for in silico macromolecular chemistry and engineering . In silico approaches to macromolecular chemistry , Elsevier , 2023 , 17 - 69 . doi: 10.1016/b978-0-323-90995-2.00012-6 http://dx.doi.org/10.1016/b978-0-323-90995-2.00012-6
Mazo M. ; Khudobin R. ; Balabaev N. ; Belov N. ; Ryzhikh V. ; Nikiforov R. ; Chatterjee R. ; Banerjee S. Structure and free volume of fluorine-containing polyetherimides with pendant di-tert-butyl groups investigated by molecular dynamics simulation . Polymer , 2022 , 258 , 125318 . doi: 10.1016/j.polymer.2022.125318 http://dx.doi.org/10.1016/j.polymer.2022.125318
吴子牛 . 计算流体力学基本原理 . 北京 : 科学出版社 , 2001 . doi: 10.1007/978-3-642-56535-9_114 http://dx.doi.org/10.1007/978-3-642-56535-9_114
陈义良 . 更通用的k-ε湍流模型 . 工程热物理学报 , 1990 , 11 ( 3 ), 328 - 334 .
Price P. E. ; Wang S. ; Romdhane I. H. Extracting effective diffusion parameters from drying experiments . AlChE. J. , 1997 , 43 ( 8 ), 1925 - 1934 . doi: 10.1002/aic.690430802 http://dx.doi.org/10.1002/aic.690430802
Kuzmin D. ; Mierka O. ; Turek S. On the implementation of the κ-ε turbulence model in incompressible flow solvers based on a finite element discretisation . Int. J. Comput. Sci. Math. , 2007 , 1 ( 2-4 ), 193 - 206 . doi: 10.1504/ijcsm.2007.016531 http://dx.doi.org/10.1504/ijcsm.2007.016531
Becker A. ; Hüttinger K. J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon: II pyrocarbon deposition from ethylene , acetylene and 1 , 3 -butadiene in the low temperature regime. Carbon, 1998, 36 ( 3 ), 177 - 199 . doi: 10.1016/s0008-6223(97)00175-9 http://dx.doi.org/10.1016/s0008-6223(97)00175-9
Vrentas J. S. ; Vrentas C. M. Drying of solvent-coated polymer films . J. Polym. Sci. Part B Polym. Phys. , 1994 , 32 ( 1 ), 187 - 194 . doi: 10.1002/polb.1994.090320122 http://dx.doi.org/10.1002/polb.1994.090320122
Arya R. K. ; Bhargava C. K. Simulation analysis of drying of ternary polymeric solution coatings . Prog. Org. Coat. , 2015 , 78 , 155 - 167 . doi: 10.1016/j.porgcoat.2014.09.011 http://dx.doi.org/10.1016/j.porgcoat.2014.09.011
Yamakawa H. Modern Theory of Polymer Solutions . Harper & Row , 1971 .
Felder R. M. ; Rousseau R. W. Elementary principles of chemical processes, John Wiley & Sons . , 2020 .
Wong S. S. Multicomponent drying of semicrystalline polymers, thesis, Iowa State University , 2006 . doi: 10.31274/rtd-180815-191 http://dx.doi.org/10.31274/rtd-180815-191
Poling B. E. ; Prausnitz J. M. ; O'connell J. P. The properties of gases and liquids, Mcgraw-hill New York , 2001 .
Middleman S. An introduction to mass and heat transfer: principles of analysis and design . John Wiley & Sons , 1997 .
Ozawa K. ; Okuzono T. ; Doi M. Diffusion process during drying to cause the skin formation in polymer solutions . Jpn. J. Appl. Phys. , 2006 , 45 ( 11 R), 8817 . doi: 10.1143/jjap.45.8817 http://dx.doi.org/10.1143/jjap.45.8817
Sharma J. ; Kumar Arya R. ; Verros G. D. A comprehensive model for the drying of glassy polymer coatings: the low solvent concentration area of the system poly(styrene)/P-xylene . Prog. Org. Coat. , 2019 , 135 , 622 - 628 . doi: 10.1016/j.porgcoat.2019.05.047 http://dx.doi.org/10.1016/j.porgcoat.2019.05.047
Ternes S. ; Börnhorst T. ; Schwenzer J. A. ; Hossain I. M. ; Abzieher T. ; Mehlmann W. ; Lemmer U. ; Scharfer P. ; Schabel W. ; Richards B. S. ; Paetzold U. W. Drying dynamics of solution-processed perovskite thin-film photovoltaics: in situ characterization, modeling, and process control . Adv. Energy Mater. , 2019 , 9 ( 39 ), 1901581 . doi: 10.1002/aenm.201901581 http://dx.doi.org/10.1002/aenm.201901581
Wong S. S. ; Altinkaya S. A. ; Mallapragada S. K. Understanding the effect of skin formation on the removal of solvents from semicrystalline polymers . J. Polym. Sci. Part B Polym. Phys. , 2005 , 43 ( 22 ), 3191 - 3204 . doi: 10.1002/polb.20615 http://dx.doi.org/10.1002/polb.20615
Chen L. B. ; Chu H. W. ; Fan X. J. A convection-diffusion porous media model for moisture transport in polymer composites: model development and validation . J. Polym. Sci. Part B Polym. Phys. , 2015 , 53 ( 20 ), 1440 - 1449 . doi: 10.1002/polb.23784 http://dx.doi.org/10.1002/polb.23784
Carter H. G. ; Kibler K. G. Langmuir-type model for anomalous moisture diffusion in composite resins . J. Compos. Mater. , 1978 , 12 ( 2 ), 118 - 131 . doi: 10.1177/002199837801200201 http://dx.doi.org/10.1177/002199837801200201
Duda J. L. ; Ni Y. C. ; Vrentas J. S. Diffusion of ethylbenzene in molten polystyrene . J. Appl. Polym. Sci. , 1978 , 22 ( 3 ), 689 - 699 . doi: 10.1002/app.1978.070220309 http://dx.doi.org/10.1002/app.1978.070220309
Huang S. J. ; Durning C. J. ; Freeman B. D. Modeling weakly non-linear two-stage sorption kinetics in glassy polymer films . J. Membr. Sci. , 1998 , 143 ( 1-2 ), 1 - 11 . doi: 10.1016/s0376-7388(97)00291-3 http://dx.doi.org/10.1016/s0376-7388(97)00291-3
Placette M. D. ; Fan X. J. ; Zhao J. H. ; Edwards D. Dual stage modeling of moisture absorption and desorption in epoxy mold compounds . Microelectron. Reliab. , 2012 , 52 ( 7 ), 1401 - 1408 . doi: 10.1016/j.microrel.2012.03.008 http://dx.doi.org/10.1016/j.microrel.2012.03.008
Kubaczka A. Prediction of Maxwell-Stefan diffusion coefficients in polymer-multicomponent fluid systems . J. Membr. Sci. , 2014 , 470 , 389 - 398 . doi: 10.1016/j.memsci.2014.06.055 http://dx.doi.org/10.1016/j.memsci.2014.06.055
Roy S. Modeling of anomalous moisture diffusion in polymer composites: A finite element approach . J. Compos. Mater. , 1999 , 33 ( 14 ), 1318 - 1343 . doi: 10.1177/002199839903301403 http://dx.doi.org/10.1177/002199839903301403
0
浏览量
92
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构