浏览全部资源
扫码关注微信
1.北京化工大学 生命科学与技术学院 有机无机复合材料国家重点实验室 生物医用材料(北京)实验室 北京 100029
2.中日友好医院普外科 北京 100029
E-mail: zhgcmd@163.com;
E-mail: yuqs@mail.buct.edu.cn
收稿日期:2024-12-31,
录用日期:2025-02-03,
网络出版日期:2025-04-07,
移动端阅览
康焱, 李建霖, 甘志华, 张国超, 喻青松. 新型氧化/还原双响应递送系统在结直肠癌腹膜转移热灌注化疗中的应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.24320
Kang, Y.; Li, J. L.; Gan, Z. H.; Zhang, G. C.; Yu, Q. S. Glutathione/reactive oxygen species dual-responsive drug delivery system for enhancing hyperthermic intraperitoneal chemotherapy in colorectal cancer peritoneal metastases. ,Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.24320
康焱, 李建霖, 甘志华, 张国超, 喻青松. 新型氧化/还原双响应递送系统在结直肠癌腹膜转移热灌注化疗中的应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.24320 DOI: CSTR: 32057.14.GFZXB.2025.7353.
Kang, Y.; Li, J. L.; Gan, Z. H.; Zhang, G. C.; Yu, Q. S. Glutathione/reactive oxygen species dual-responsive drug delivery system for enhancing hyperthermic intraperitoneal chemotherapy in colorectal cancer peritoneal metastases. ,Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.24320 DOI: CSTR: 32057.14.GFZXB.2025.7353.
结直肠癌腹膜转移是其常见的晚期转移形式,细胞减灭术-腹腔热灌注化疗(CRS-HIPEC)是目前唯一有效的临床治疗手段. 然而,HIPEC治疗存在局限性,包括严重的毒副作用以及肿瘤细胞内热休克蛋白90 (HSP90)的激活,导致治疗过程的疗效和安全性受到限制. 为了提高CRS-HIPEC的治疗效率与安全性,本研究设计并开发了一种基于壳聚糖的新型双响应递送系统(CsB),用于递送具有ROS响应特性的藤黄酸(GA)前药(GB). 纳米前药利用肿瘤微环境中高浓度的谷胱甘肽(GSH)和活性氧(ROS)实现精准药物释放,进一步通过NQO-1底物
β
-Lapachone显著提高ROS水平,从而加速GB向活性药物GA的转化. GA通过抑制HSP90表达,增强细胞凋亡、降低耐药性并抑制肿瘤血管生成,可显著改善腹腔热灌注治疗的疗效和安全性. 本研究为结直肠癌腹膜转移的精准治疗提供了新的策略,并为未来临床应用奠定了理论和实验基础.
Colorectal cancer peritoneal metastases stand as a prevalent form of advanced-stage metastasis. Currently
cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) is the sole clinically effective treatment available. Nevertheless
the efficacy and safety of HIPEC are severely hampered by its intense toxic side effects and the activation of heat shock protein 90 (HSP90) within tumor cells. To enhance the therapeutic efficiency and safety of CRS-HIPEC
this study ingeniously designed and developed a novel redox-responsive chitosan-based delivery system (CsB) for the delivery of the reactive oxygen species (ROS)-responsive prodrug gambogenic acid (GB). This nanoprodrug capitalizes on the elevated levels of glutathione (GSH) and ROS in the tumor microenvironment to achieve targeted drug release. Moreover
by incorporating
β
-lapachone
a substrate of NAD(P)H: quinone oxidoreductase-1 (NQO-1)
the system substantially boosts intracellular ROS levels. As a result
it accelerates the conversion of GB into its active form
gambogenic acid (GA). GA exerts its therapeutic effects through multiple mechanisms. It inhibits HSP90 expression
promotes apoptosis
reduces drug resistance
and suppresses tumor angiogenesis. These combined actions comprehensively improve the efficacy and safety of intraperitoneal hyperthermic therapy. This study presents a novel strategy for the precision treatment of colorectal cancer peritoneal metastases and furnishes a solid th
eoretical and experimental foundation for future clinical applications.
Quere P. ; Facy O. ; Manfredi S. ; Jooste V. ; Faivre J. ; Lepage C. ; Bouvier A. M. Epidemiology, management, and survival of peritoneal carcinomatosis from colorectal cancer: a population-based study . Dis. Colon Rectum , 2015 , 58 ( 8 ), 743 - 752 . doi: 10.1097/dcr.0000000000000412 http://dx.doi.org/10.1097/dcr.0000000000000412
Segelman J. ; Granath F. ; Holm T. ; Machado M. ; Mahteme H. ; Martling A. Incidence, prevalence and risk factors for peritoneal carcinomatosis from colorectal cancer . Br. J. Surg. , 2012 , 99 ( 5 ), 699 - 705 . doi: 10.1002/bjs.8679 http://dx.doi.org/10.1002/bjs.8679
Sugarbaker P. H. Peritoneal carcinomatosis: natural history and rational therapeutic interventions using intraperitoneal chemotherapy . Cancer Treat. Res. , 1996 , 81 , 149 - 168 . doi: 10.1007/978-1-4613-1245-1_13 http://dx.doi.org/10.1007/978-1-4613-1245-1_13
Fujimura T. ; Yonemura Y. ; Fujita H. ; Michiwa Y. ; Kawamura T. ; Nojima N. ; Sato T. ; Fushida S. ; Nishimura G. ; Miwa K. ; Miyazaki I. ; Murakami K. ; Katayama K. ; Yamaguchi A. Chemohyperthermic peritoneal perfusion for peritoneal dissemination in various intra-abdominal malignancies . Int. Surg. , 1999 , 84 ( 1 ), 60 - 66 . doi: http://dx.doi.org/ http://dx.doi.org/http://dx.doi.org/
Cornali T. ; Sammartino P. ; Kopanakis N. ; Christopoulou A. ; Framarino Dei Malatesta M. ; Efstathiou E. ; Spagnoli A. ; Ciardi A. ; Biacchi D. ; Spiliotis J. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for patients with peritoneal metastases from endometrial cancer . Ann. Surg. Oncol. , 2018 , 25 ( 3 ), 679 - 687 . doi: 10.1245/s10434-017-6307-3 http://dx.doi.org/10.1245/s10434-017-6307-3
Jacks S. P. ; Hundley J. C. ; Shen P. ; Russell G. B. ; Levine E. A. Cytoreductive surgery and intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis from small bowel adenocarcinoma . J. Surg. Oncol. , 2005 , 91 ( 2 ), 112 - 117 . doi: 10.1002/jso.20296 http://dx.doi.org/10.1002/jso.20296
Verwaal V. J. ; van Ruth S. ; de Bree E. ; van Sloothen G. W. ; van Tinteren H. ; Boot H. ; Zoetmulder F. A. N. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer . J. Clin. Oncol. , 2003 , 21 ( 20 ), 3737 - 3743 . doi: 10.1200/jco.2003.04.187 http://dx.doi.org/10.1200/jco.2003.04.187
Li P. L. ; Shang X. Y. ; Jiao Q. L. ; Mi Q. ; Zhu M. Q. ; Ren Y. D. ; Li J. ; Li L. ; Liu J. ; Wang C. X. ; Shi Y. ; Wang Y. S. ; Du L. T. Alteration of chromatin high-order conformation associated with oxaliplatin resistance acquisition in colorectal cancer cells . Exploration , 2023 , 3 ( 4 ), 20220136 . doi: 10.1002/exp.20220136 http://dx.doi.org/10.1002/exp.20220136
Verwaal, V. J.; Bruin, S.; Boot, H.; van Slooten, G.; van Tinteren, H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann . Surg . Oncol. , 2008 , 15 ( 9 ), 2426 - 2432 . doi: 10.1245/s10434-008-9966-2 http://dx.doi.org/10.1245/s10434-008-9966-2
Gerber H. P. ; Dixit V. ; Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins bcl-2 and A1 in vascular endothelial cells . J. Biol. Chem. , 1998 , 273 ( 21 ), 13313 - 13316 . doi: 10.1074/jbc.273.21.13313 http://dx.doi.org/10.1074/jbc.273.21.13313
Pandey P. ; Saleh A. ; Nakazawa A. ; Kumar S. ; Srinivasula S. M. ; Kumar V. ; Weichselbaum R. ; Nalin C. ; Alnemri E. S. ; Kufe D. ; Kharbanda S. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90 . EMBO J. , 2000 , 19 ( 16 ), 4310 - 4322 . doi: 10.1093/emboj/19.16.4310 http://dx.doi.org/10.1093/emboj/19.16.4310
Kashyap D. ; Mondal R. ; Tuli H. S. ; Kumar G. ; Sharma A. K. Molecular targets of gambogic acid in cancer: recent trends and advancements . Tumour Biol. , 2016 , 37 ( 10 ), 12915 - 12925 . doi: 10.1007/s13277-016-5194-8 http://dx.doi.org/10.1007/s13277-016-5194-8
Huang J. ; Zhu X. L. ; Wu Y. ; Han S. H. ; Xie Y. ; Yang S. F. ; Ding M. ; Chen P. S. Combined effects of low-dose gambogic acid and NaI 131 in drug-resistant non-small cell lung cancer cells . Oncol. Lett. , 2021 , 22 ( 2 ), 588 . doi: 10.3892/ol.2021.12849 http://dx.doi.org/10.3892/ol.2021.12849
Banik K. ; Harsha C. ; Bordoloi D. ; Lalduhsaki Sailo B. ; Sethi G. ; Leong H. C. ; Arfuso F. ; Mishra S. ; Wang L. Z. ; Kumar A. P. ; Kunnumakkara A. B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer . Cancer Lett. , 2018 , 416 , 75 - 86 . doi: 10.1016/j.canlet.2017.12.014 http://dx.doi.org/10.1016/j.canlet.2017.12.014
Li L. ; Liang X. Q. ; He T. ; Li X. C. ; Huang X. Z. ; Wang N. ; Shen M. L. ; Shu Y. Q. ; Wu R. ; Zhang M. M. ; Wu Q. J. ; Gong C. Y. Multifunctional light-activatable nano complex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy . Biomaterials , 2022 , 290 , 121815 . doi: 10.1016/j.biomaterials.2022.121815 http://dx.doi.org/10.1016/j.biomaterials.2022.121815
Wu MeyersN. ; Karasik A. ; Kaitany K. ; Fierke C. A. ; Koutmos M. Gambogic acid and juglone inhibit RNase P through distinct mechanisms . J. Biol. Chem. , 2022 , 298 ( 12 ), 102683 . doi: 10.1016/j.jbc.2022.102683 http://dx.doi.org/10.1016/j.jbc.2022.102683
Chen B. Q. ; Kankala R. K. ; Zhang Y. ; Xiang S. T. ; Tang H. X. ; Wang Q. ; Yang D. Y. ; Wang S. B. ; Zhang Y. S. ; Liu G. ; Chen A. Z. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression . Chem. Eng. J. , 2020 , 390 , 124312 . doi: 10.1016/j.cej.2020.124312 http://dx.doi.org/10.1016/j.cej.2020.124312
Sun T. T. ; Chen X. X. ; Wang X. ; Liu S. ; Liu J. ; Xie Z. G. Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein . Mater. Chem. Front. , 2019 , 3 ( 1 ), 127 - 136 . doi: 10.1039/c8qm00459e http://dx.doi.org/10.1039/c8qm00459e
Pesonen L. ; Svartsjö S. ; Bäck V. ; de Thonel A. ; Mezger V. ; Sabéran-Djoneidi D. ; Roos-Mattjus P. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP 90 and HSF 1 or HSF 2 . Cell Stress. Chaperones, 2021, 26 ( 5 ), 819 - 833 . doi: 10.1007/s12192-021-01222-4 http://dx.doi.org/10.1007/s12192-021-01222-4
Baharlouei P. ; Rahman A. Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing . Mar. Drugs , 2022 , 20 ( 7 ), 460 . doi: 10.3390/md20070460 http://dx.doi.org/10.3390/md20070460
M Ways, T. M. ; Lau W. M. ; Khutoryanskiy V. V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems . Polymers , 2018 , 10 ( 3 ), E 267 . doi: 10.3390/polym10030267 http://dx.doi.org/10.3390/polym10030267
Yang Y. ; Zhou X. C. ; Xu M. ; Piao J. J. ; Zhang Y. ; Lin Z. H. ; Chen L. Y. β -lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers . Sci. Rep. , 2017 , 7 ( 1 ), 2681 . doi: 10.1038/s41598-017-02937-0 http://dx.doi.org/10.1038/s41598-017-02937-0
Xu X. ; Liu K. P. ; Jiao B. B. ; Luo K. J. ; Ren J. ; Zhang G. ; Yu Q. S. ; Gan Z. H. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer . J. Control. Release , 2020 , 324 , 493 - 504 . doi: 10.1016/j.jconrel.2020.03.028 http://dx.doi.org/10.1016/j.jconrel.2020.03.028
Li Y. H. ; Zhai Y. L. ; Chen W. ; Li Z. H. ; Wang H. Microscopic mechanisms of particle agglomeration to enhance transport properties of nanofluids . J. Mol. Liq. , 2023 , 383 , 122008 . doi: 10.1016/j.molliq.2023.122008 http://dx.doi.org/10.1016/j.molliq.2023.122008
Liu K. P. ; Mo Q. X. ; Ding Z. S. ; Lai S. C. ; Ren J. ; Yu Q. S. Nano theranostics involved in bladder cancer treatment . Explor . Drug Sci. , 2023 , 81 - 106 . doi: 10.37349/eds.2023.00008 http://dx.doi.org/10.37349/eds.2023.00008
Zhu X. Q. ; Li L. ; Tang J. ; Yang C. Y. ; Yu H. ; Liu K. P. ; Zheng Z. Y. ; Gu X. G. ; Yu Q. S. ; Xu F. J. ; Gan Z. H. Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells . Biomaterials , 2022 , 280 , 121305 . doi: 10.1016/j.biomaterials.2021.121305 http://dx.doi.org/10.1016/j.biomaterials.2021.121305
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构