浏览全部资源
扫码关注微信
1.东华大学 先进纤维材料全国重点实验室 材料科学与工程学院 上海 201620
2.康复大学康复科学与工程学院 青岛 266114
[ "毛晓卉,女,1990年生. 2012年毕业于南开大学化学学院分子科学与工程系,获南开大学理学学士学位和天津大学工学学士学位. 2015、2021年分别获加拿大阿尔伯塔大学硕士和博士学位. 2023年入职东华大学材料科学与工程学院. 获上海市高层次人才计划(海外),主持国家自然科学青年基金. 近年来,在专业领域相关期刊发表论文30余篇. 研究方向为基于原子力显微镜探测分子间相互作用,主要应用领域有活性分子在油-水界面的组装、乳液稳定性调控、黏结剂分子设计." ]
[ "朱丽萍,女,1981年生. 东华大学获学士和硕士学位,美国科罗拉多矿业学院获材料学博士学位,东华大学材料科学与工程学院副研究员、博士生导师,国家高层次青年人才,联合国环境署臭氧环境影响评估委员会委员. 2019年至今以第一或通讯作者身份在Acc. Mater. Res.、Matter、Carbohyd. Polym.、J. Colloid Interface Sci.等期刊发表论文25篇,主持国家自然科学基金面上项目1项、企业委托项目3项,承担科技部国家重点研发计划课题任务1项、国家自然科学基金联合基金项目课题1项. 获中国纺织联合会科技进步奖一等奖(3/15)、中国材料研究学会科学技术一等奖(6/15). 主要从事生物基医用高分子材料及纤维膜材料改性制备、材料表面改性及表界面性能研究." ]
收稿日期:2024-11-14,
录用日期:2025-03-06,
网络出版日期:2025-04-27,
移动端阅览
孙颖, 王伟杰, 姚焰, 刘青青, 陈鱼, 毛晓卉, 朱丽萍, 朱美芳. 高分子材料在蛋白分离应用中的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.24267
Sun, Y.; Wang, W. J.; Yao, Y.; Liu, Q. Q.; Chen, Y.; Mao, X. H.; Zhu, L. P.; Zhu, M. F. Advances in polymer materials for protein separation applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.24267
孙颖, 王伟杰, 姚焰, 刘青青, 陈鱼, 毛晓卉, 朱丽萍, 朱美芳. 高分子材料在蛋白分离应用中的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.24267 DOI: CSTR: 32057.14.GFZXB.2025.7377.
Sun, Y.; Wang, W. J.; Yao, Y.; Liu, Q. Q.; Chen, Y.; Mao, X. H.; Zhu, L. P.; Zhu, M. F. Advances in polymer materials for protein separation applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.24267 DOI: 10.11777/j.issn1000-3304.2025.24267. CSTR: 32057.14.GFZXB.2025.7377.
蛋白质是构成生命组织、调节生理功能、为生命活动提供能量等所必需的重要物质. 随着蛋白质组学技术的提出及生物技术的迅速发展,对蛋白质高效分离的需求日益增长. 高分子材料凭借其良好的稳定性、智能响应性、可设计性及易加工性等特点成为蛋白分离领域的重要材料. 本文依据蛋白质自身物理特性,基于高分子官能团与蛋白的相互作用机理,将高分子分为中性、正电、负电以及可调节电荷体系,综述了其在蛋白分离技术中的应用,并展望了高分子材料在蛋白分离领域的未来发展.
Proteins are essential for the construction of living organisms
regulation of physiological functions
and energy supply for life activities. With the introduction of proteomics technology and the rapid development of biotechnology
the demand for efficient protein separation is increasing. The development of effective protein separation techniques is essential to advance proteomics research and biotechnology applications. This review aims to summarize recent advances in the field of protein separation using polymeric materials
focusing on the design
function and application potential of these materials. The review begins with a classification of polymers according to their interaction mechanism with proteins
which includes size si
eving
hydrophobic interactions and electrostatic interactions. These interactions can be used for selective protein capture and purification. Neutral polymers are firstly introduced and classified into hydrophilic and hydrophobic polymers
which separate proteins
via
size sieving and hydrophobic interactions
and are known for their abilities in constructing stable three-dimensional network structures
reducing non-specific adsorption and maintaining protein activity. The second focus is placed on the separation of positively and negatively charged proteins by electrostatic attraction or repulsion
and the introduction of abundant charged functional groups on polymeric materials can provide active sites for protein binding. Tunable charge systems are also discussed
with a focus on composites that can be switched between cationic
neutral and anionic states. Weak polyelectrolytes that undergo reversible protonation and deprotonation are commonly used in the tunable system as their charge state changes in response to changes in pH or other environmental factors. This property facilitates the control of protein adsorption and desorption processes. The application of stimuli-responsive polymers with changeable physical or chemical properties in response to external stimuli such as temperature
pH
light
or electric fields
in improving protein capture efficiency and selectivity is also reviewed. Finally
this review predicts future trends in protein separation technology
envisioning more efficient
precise
and intelligent systems capable of achieving higher purity and yield of protein separation. The development of cost-effective
scalable methods to meet the stringent requirements of personalized therapies and industrial biopharmaceutical production remains a challenge. The combination of information technology and traditional experimental science will pave the way for next-generation protein separation tools that address these challenges
making a significant contribution to the advancement of
life sciences and healthcare.
Wilkins, M. Proteomics data mining . Expert Rev. Proteomics. , 2009 , 6 ( 6 ), 599 - 603 . doi: 10.1586/epr.09.81 http://dx.doi.org/10.1586/epr.09.81
Issaq H. J. The role of separation science in proteomics research . Electrophoresis , 2001 , 22 ( 17 ), 3629 - 3638 . doi: 10.1002/1522-2683(200109)22:17<3629::aid-elps3629>3.0.co;2-o http://dx.doi.org/10.1002/1522-2683(200109)22:17<3629::aid-elps3629>3.0.co;2-o
Sun N. R. ; Wu H. ; Shen X. Z. ; Deng C. H. Nanomaterials in proteomics . Adv. Funct. Mater , 2019 , 29 ( 26 ), 1900253 . doi: 10.1002/adfm.201970182 http://dx.doi.org/10.1002/adfm.201970182
Muhammad P. ; Tu X. Y. ; Liu J. ; Wang Y. J. ; Liu Z. Molecularly imprinted plasmonic substrates for specific and ultrasensitive immunoassay of trace glycoproteins in biological samples . ACS Appl. Mater. Interfaces , 2017 , 9 ( 13 ), 12082 - 12091 . doi: 10.1021/acsami.7b00628 http://dx.doi.org/10.1021/acsami.7b00628
陈静 , 刘畅 , 于冰 , 丛海林 . 基于静电纺丝的类海绵体材料用于溶菌酶的吸附行为 . 高分子学报 , 2023 , 54 ( 10 ), 1632 - 1640 .
Zhou Y. ; Wu J. X. ; Li Y. Y. ; Zhang W. ; Zou Y. S. ; Duan L. ; Yang X. ; Xiao B. ; Yi S. X. Fabrication of sulfated silk fibroin-based blend nanofibrous membranes for lysozyme adsorption . Adv. Fiber Mater. , 2022 , 4 ( 1 ), 89 - 97 . doi: 10.1007/s42765-021-00104-9 http://dx.doi.org/10.1007/s42765-021-00104-9
Cruz-Landeira A. ; Bal M. J. ; Quintela , López-Rivadulla M. Determination of methemoglobin and total hemoglobin in toxicological studies by derivative spectrophotometry . J. Anal. Toxicol. , 2002 , 26 ( 2 ), 67 - 72 . doi: 10.1093/jat/26.2.67 http://dx.doi.org/10.1093/jat/26.2.67
Vlasova I. I. Peroxidase activity of human hemoproteins: keeping the fire under control . Molecules , 2018 , 23 ( 10 ), 2561 . doi: 10.3390/molecules23102561 http://dx.doi.org/10.3390/molecules23102561
王薇 , 张杰 , 张宇峰 . 高性能MWCNTs-OH修饰聚偏氟乙烯中空纤维超滤膜的制备 . 高分子学报 , 2016 , ( 5 ), 584 - 590 . doi: 10.11777/j.issn1000-3304.2016.15259 http://dx.doi.org/10.11777/j.issn1000-3304.2016.15259
São Pedro M. N. ; Azevedo A. M. ; Aires-Barros M. R. ; Soares R. R. G. Minimizing the influence of fluorescent tags on IgG partition in PEG- salt aqueous two-phase systems for rapid screening applications . Biotechnol. J. , 2019 , 14 ( 8 ), e 1800640 . doi: 10.1002/biot.201800640 http://dx.doi.org/10.1002/biot.201800640
刘巍 , 刘勇刚 , 姬相玲 . 体积排除色谱技术在高分子表征中的应用 . 高分子学报 , 2021 , 52 ( 9 ), 1221 - 1244 . doi: 10.11777/j.issn.1000-3304.2020.20253 http://dx.doi.org/10.11777/j.issn.1000-3304.2020.20253
Cheng P. F. ; Ferrell N. ; Hus S. M. ; Moehring N. K. ; Coupin M. J. ; Warner J. ; Li A. P. ; Fissell W. H. ; Kidambi P. R. Protein-enabled size-selective defect-sealing of atomically thin 2D membranes for dialysis and nanoscale separations . Nano Lett. , 2025 , 25 ( 1 ), 193 - 203 . doi: 10.1021/acs.nanolett.4c04706 http://dx.doi.org/10.1021/acs.nanolett.4c04706
Bergfreund J. ; Bertsch P. ; Fischer P. Adsorption of proteins to fluid interfaces: role of the hydrophobic subphase . J. Colloid Interface Sci. , 2021 , 584 , 411 - 417 . doi: 10.1016/j.jcis.2020.09.118 http://dx.doi.org/10.1016/j.jcis.2020.09.118
Wang L. H. ; Fu Q. X. ; Yu J. Y. ; Liu L. F. ; Ding B. Cellulose nanofibrous membranes modified with phenyl glycidyl ether for efficient adsorption of bovine serum albumin . Adv. Fiber Mater. , 2019 , 1 ( 3 ), 188 - 196 . doi: 10.1007/s42765-019-00010-1 http://dx.doi.org/10.1007/s42765-019-00010-1
Li P. P. ; Thankamony R. L. ; Li X. ; Li Z. ; Liu X. W. ; Lai Z. P. Nanoporous polyethersulfone membranes prepared by mixed solvent phase separation method for protein separation . J. Membr. Sci. , 2021 , 635 , 119507 . doi: 10.1016/j.memsci.2021.119507 http://dx.doi.org/10.1016/j.memsci.2021.119507
Lan D. D. ; Bai L. G. ; Pang X. M. ; Liu H. Y. ; Yan H. Y. ; Guo H. Z. In situ synthesis of a monolithic material with multi-sized pores and its chromatographic properties for the separation of intact proteins from human plasma . Talanta , 2019 , 194 , 406 - 414 . doi: 10.1016/j.talanta.2018.10.054 http://dx.doi.org/10.1016/j.talanta.2018.10.054
Dong S. T. ; Li S. ; Hao Y. C. ; Gao Q. Y. Hydroxybutyl starch-based thermosensitive hydrogel for protein separation . Int. J. Biol. Macromol. , 2019 , 134 , 165 - 171 . doi: 10.1016/j.ijbiomac.2019.04.206 http://dx.doi.org/10.1016/j.ijbiomac.2019.04.206
Yang X. H. ; Wan G. P. ; Ma S. J. ; Xia H. J. ; Wang J. ; Liu J. W. ; Liu Y. N. ; Chen G. ; Bai Q. Synthesis and optimization of SiO 2 @SiO 2 core-shell microspheres by an improved polymerization-induced colloid aggregation method for fast separation of small solutes and proteins . Talanta , 2020 , 207 , 120310 . doi: 10.1016/j.talanta.2019.120310 http://dx.doi.org/10.1016/j.talanta.2019.120310
Gomes D. ; Correia M. A. S. ; Romão M. J. ; Passarinha L. A. ; Sousa A. Integrated approaches for the separation and purification of recombinant HPV16 E6 protein from Escherichia coli crude extracts . Sep. Purif. Technol. , 2023 , 315 , 123647 . doi: 10.1016/j.seppur.2023.123647 http://dx.doi.org/10.1016/j.seppur.2023.123647
Feng G. Y. ; Wang Z. L. ; Xu M. ; Wang C. W. ; Li Y. B. Cyclodextrin-modified PVDF membranes with improved anti-fouling performance . Chemosphere , 2024 , 363 , 142808 . doi: 10.1016/j.chemosphere.2024.142808 http://dx.doi.org/10.1016/j.chemosphere.2024.142808
An Y. X. ; Li F. ; Di Y. B. ; Zhang X. B. ; Lu J. J. ; Wang L. ; Yan Z. F. ; Wang W. ; Liu M. ; Fei P. F. Hydrophobic modification of cellulose acetate and its application in the field of water treatment: a review . Molecules , 2024 , 29 ( 21 ), 5127 . doi: 10.3390/molecules29215127 http://dx.doi.org/10.3390/molecules29215127
Baca M. ; De Vos J. ; Bruylants G. ; Bartik K. ; Liu X. D. ; Cook K. ; Eeltink S. A comprehensive study to protein retention in hydrophobic interaction chromatography . J. Chromatogr. B , 2016 , 1032 , 182 - 188 . doi: 10.1016/j.jchromb.2016.05.012 http://dx.doi.org/10.1016/j.jchromb.2016.05.012
Lin Y. C. ; Wang D. K. ; Liu J. Y. ; Niaei A. ; Tseng H. H. Low band-gap energy photocatalytic membrane based on SrTiO 3 -Cr and PVDF substrate: BSA protein degradation and separation application . J. Membr. Sci. , 2019 , 586 , 326 - 337 . doi: 10.1016/j.memsci.2019.05.067 http://dx.doi.org/10.1016/j.memsci.2019.05.067
Singh R. ; Volli V. ; Lohani L. ; Purkait M. K. Polymeric ultrafiltration membranes modified with fly ash based carbon nanotubes for thermal stability and protein separation . Case Stud. Chem. Environ. Eng. , 2021 , 4 , 100155 . doi: 10.1016/j.cscee.2021.100155 http://dx.doi.org/10.1016/j.cscee.2021.100155
Ocakoglu K. ; Dizge N. ; Colak S. G. ; Ozay Y. ; Bilici Z. ; Yalcin M. S. ; Ozdemir S. ; Yatmaz H. C. Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: improvement of antifouling and self-cleaning performance . Colloids Surf. A Physicochem. Eng. Aspects , 2021 , 616 , 126230 . doi: 10.1016/j.colsurfa.2021.126230 http://dx.doi.org/10.1016/j.colsurfa.2021.126230
Ke C. Y. ; Lu G. M. ; Sun W. J. ; Zhang X. L. High efficiency and fast separation of active proteins by HIC chromatographic pie with sub-2 μm polymer packings . J. Chromatogr. B , 2018 , 1076 , 110 - 116 . doi: 10.1016/j.jchromb.2017.12.027 http://dx.doi.org/10.1016/j.jchromb.2017.12.027
Cummins P. M. ; Rochfort K. D. ; O'Connor B. F. Ion-exchange chromatography: basic principles and application . Methods Mol. Biol. , 2017 , 1485 , 209 - 223 . doi: 10.1007/978-1-4939-6412-3_11 http://dx.doi.org/10.1007/978-1-4939-6412-3_11
Ji Y. T. ; Yang W. F. ; Li X. Y. ; Chen Y. J. ; Xu B. ; Cai Z. S. A molecular confine-induced charged fiber for fog harvesting . Adv. Fiber Mater. , 2025 , 7 ( 1 ), 172 - 185 . doi: 10.1007/s42765-024-00474-w http://dx.doi.org/10.1007/s42765-024-00474-w
Rao C. S. Purification of large proteins using ion-exchange membranes . Process. Biochem. , 2001 , 37 ( 3 ), 247 - 256 . doi: 10.1016/s0032-9592(01)00207-2 http://dx.doi.org/10.1016/s0032-9592(01)00207-2
孙庆申 , 李鑫 , 车小琼 , 常继涛 , 杨勇博 , 于力 . 载牛冠状病毒N蛋白壳聚糖微球的免疫效果评价 . 中国预防兽医学报 , 2009 , 31 ( 11 ), 882 - 886 .
Li S. S. ; Shi C. ; Ai H. ; Du K. F. Bacterial cellulose-based submicrobundle framework-induced hyperporous cellulose microspheres functionalized by ionic liquids for anion exchange chromatography . Chem. Eng. J. , 2023 , 475 , 146030 . doi: 10.1016/j.cej.2023.146030 http://dx.doi.org/10.1016/j.cej.2023.146030
Zou D. ; Chen X. F. ; Drioli E. ; Ke X. B. ; Qiu M. H. ; Fan Y. Q. Facile co -sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation . J. Membr. Sci. , 2020 , 593 , 117402 . doi: 10.1016/j.memsci.2019.117402 http://dx.doi.org/10.1016/j.memsci.2019.117402
Fabiano A. ; Beconcini D. ; Migone C. ; Piras A. M. ; Zambito Y. Quaternary ammonium chitosans: the importance of the positive fixed charge of the drug delivery systems . Int. J. Mol. Sci. , 2020 , 21 ( 18 ), 6617 . doi: 10.3390/ijms21186617 http://dx.doi.org/10.3390/ijms21186617
Crihfield C. L. ; Kristoff C. J. ; Veltri L. M. ; Penny W. M. ; Holland L. A. Semi-permanent cationic coating for protein separations . J. Chromatogr. A , 2019 , 1607 , 460397 . doi: 10.1016/j.chroma.2019.460397 http://dx.doi.org/10.1016/j.chroma.2019.460397
Zhang R. ; Li Y. H. ; Yan J. J. ; Zeng J. X. ; Liu Y. ; Zhang M. M. ; Liu P. F. ; Huang X. P. ; Zhang E. D. ; Cheng K. P. ; Chen J. Y. ; Sun J. L. Surface modification of PVDF membranes with quaternized chitosan for selective separation of negatively charged polysaccharides-exemplified with heparin . J. Environ. Chem. Eng. , 2023 , 11 ( 5 ), 110666 . doi: 10.1016/j.jece.2023.110666 http://dx.doi.org/10.1016/j.jece.2023.110666
Yang X. ; Hsia T. ; Merenda A. ; AL-Attabi R. ; Dumee L. F. ; Thang S. H. ; Kong L. X. Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation . Sep. Purif. Technol. , 2022 , 285 , 120364 . doi: 10.1016/j.seppur.2021.120364 http://dx.doi.org/10.1016/j.seppur.2021.120364
Qiao L. Z. ; Pan Y. K. ; Xie J. ; Du K. F. Sequential diethylaminoethyl dextran-grafting and diethylaminoethyl modification improve the adsorption performance of anion exchangers . J. Chromatogr. A , 2024 , 1730 , 465119 . doi: 10.1016/j.chroma.2024.465119 http://dx.doi.org/10.1016/j.chroma.2024.465119
Qiao L. Z. ; Du Y. C. ; Du K. F. Grafting diethylaminoethyl dextran to macroporous cellulose microspheres: a protein anion exchanger of high capacity and fast uptake rate . Sep. Purif. Technol. , 2022 , 297 , 121434 . doi: 10.1016/j.seppur.2022.121434 http://dx.doi.org/10.1016/j.seppur.2022.121434
Zhao L. S. ; Li S. S. ; Liang C. ; Qiao L. Z. ; Du K. F. High-strength and low-crystallinity cellulose/agarose composite microspheres: fabrication, characterization and protein adsorption . Biochem. Eng. J. , 2021 , 166 , 107826 . doi: 10.1016/j.bej.2020.107826 http://dx.doi.org/10.1016/j.bej.2020.107826
Qiao L. Z. ; Li S. S. ; Du K. F. Fabrication and characterization of porous cellulose beads with high strength and specific surface area via preliminary chemical cross-linking reaction for protein separation . Biochem. Eng. J. , 2020 , 153 , 107412 . doi: 10.1016/j.bej.2019.107412 http://dx.doi.org/10.1016/j.bej.2019.107412
Aledo J. C. Methionine in proteins: the Cinderella of the proteinogenic amino acids . Protein Sci. , 2019 , 28 ( 10 ), 1785 - 1796 . doi: 10.1002/pro.3698 http://dx.doi.org/10.1002/pro.3698
Murguía-Flores D. A. ; Bonilla-Ríos J. ; Canales-Fiscal M. R. ; Sánchez-Fernández A. Protein adsorption through Chitosan-Alginate membranes for potential applications . Chem. Cent. J. , 2016 , 10 ( 1 ), 26 . doi: 10.1186/s13065-016-0167-y http://dx.doi.org/10.1186/s13065-016-0167-y
Zhang M. ; Zhang X. H. ; He X. W. ; Chen L. X. ; Zhang Y. K. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein . Nanoscale , 2012 , 4 ( 10 ), 3141 - 3147 . doi: 10.1039/c2nr30316g http://dx.doi.org/10.1039/c2nr30316g
Chetia P. ; Bharadwaj C. ; Purbey R. ; Bora D. ; Yadav A. ; Lal M. ; Rajulu A. V. ; Sadiku E. R. ; Selvam S. P. ; Jarugala J. Influence of silylated nano cellulose reinforcement on the mechanical, water resistance, thermal, morphological and antibacterial properties of soy protein isolate (SPI)-based composite films . Int. J. Biol. Macromol. , 2023 , 242 , 124861 . doi: 10.1016/j.ijbiomac.2023.124861 http://dx.doi.org/10.1016/j.ijbiomac.2023.124861
Zhao J. ; Wang Y. ; Tang Q. L. ; Li J. B. ; Dou X. ; Gou D. X. ; Liu T. Starch-chitosan composite films for the effective removal of protein in water . Biomass Convers. Biorefin. , 2024 , 14 ( 14 ), 16403 - 16413 . doi: 10.1007/s13399-023-03961-z http://dx.doi.org/10.1007/s13399-023-03961-z
Luo L. S. ; Chen L. Y. ; Zhou Z. H. ; Mao Z. P. ; Wang B. J. ; Feng X. L. Eco-friendly and underwater superelastic cellulose nanofibrous aerogels for efficient capture and high-throughput protein separation . Sep. Purif. Technol. , 2024 , 328 , 125062 . doi: 10.1016/j.seppur.2023.125062 http://dx.doi.org/10.1016/j.seppur.2023.125062
Xie J. ; Bi J. F. ; Nicolas J. ; Christophe B. ; Wang F. Z. ; Lyu J. Dysphagia food: impact of soy protein isolate (SPI) addition on textural, physicochemical and microstructural properties of peach complex gels . Food Hydrocoll. , 2024 , 154 , 110130 . doi: 10.1016/j.foodhyd.2024.110130 http://dx.doi.org/10.1016/j.foodhyd.2024.110130
Wang Y. S. ; Li C. Y. ; Zheng Y. D. ; Xie Y. J. ; Qiao K. ; He W. ; Yang S. M. Plant protein modified natural cellulose with multiple adsorption effects used for bilirubin removal . Int. J. Biol. Macromol. , 2021 , 166 , 179 - 189 . doi: 10.1016/j.ijbiomac.2020.10.131 http://dx.doi.org/10.1016/j.ijbiomac.2020.10.131
Rajesh S. ; Crandall C. ; Schneiderman S. ; Menkhaus T. J. Cellulose- graft -polyethyleneamidoamine anion-exchange nanofiber membranes for simultaneous protein adsorption and virus filtration . ACS Appl. Nano Mater. , 2018 , 1 ( 7 ), 3321 - 3330 . doi: 10.1021/acsanm.8b00519 http://dx.doi.org/10.1021/acsanm.8b00519
Omrani M. M. ; Kiaie N. ; Ansari M. ; Kordestani S. S. Enhanced protein adsorption, cell attachment, and neural differentiation with the help of amine functionalized polycaprolactone scaffolds . J. Macromol. Sci. Part B , 2016 , 55 ( 6 ), 617 - 626 . doi: 10.1080/00222348.2016.1179245 http://dx.doi.org/10.1080/00222348.2016.1179245
Li H. Y. ; Huang W. ; Qiu B. ; Thabet H. K. ; Alhashmialameer D. ; Huang M. N. ; Guo Z. H. Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites . Adv. Compos. Hybrid Mater. , 2022 , 5 ( 3 ), 1888 - 1898 . doi: 10.1007/s42114-022-00508-0 http://dx.doi.org/10.1007/s42114-022-00508-0
Dai N. ; Wang S. Y. ; Li H. ; Zhao L. ; Jin H. B. ; An N. ; Gong P. S. ; Tan Q. Q. ; Tang X. ; Wang F. ; Zhang R. Y. Fabrication of poly(glycidyl methacrylate- co -ethylene glycol dimethacrylate) macroporous microspheres through activators regenerated by electron transfer atom transfer radical polymerization for rapid separation of proteins . J. Chromatogr. B , 2019 , 1128 , 121794 . doi: 10.1016/j.jchromb.2019.121794 http://dx.doi.org/10.1016/j.jchromb.2019.121794
Atodiresei N. ; Caciuc V. ; Franke J. H. ; Blügel S. Role of the van der Waals interactions on the bonding mechanism of pyridine on Cu(110) and Ag(110) surface: first-principles study . Phys. Rev. B , 2008 , 78 ( 4 ), 045411 . doi: 10.1103/PhysRevB.78.045411 http://dx.doi.org/10.1103/PhysRevB.78.045411
Wilkes J. S. A short history of ionic liquids: from molten salts to neoteric solvents . Green Chem. , 2002 , 4 ( 2 ), 73 - 80 . doi: 10.1039/b110838g http://dx.doi.org/10.1039/b110838g
Kurahashi M. ; Sun X. Observation of a half-metallic interface state for pyridine-adsorbed H/Fe 3 O 4 ( 100 ). J. Phys. Chem. Lett., 2021, 12 ( 35 ), 8489 - 8494 .
Ji C. C. ; Hu W. ; Cheng P. ; Huang P. ; He S. S. ; Xiang Y. ; Zhou F. ; Liu K. ; Wang D. Cation exchange chromatography membrane of Poly(ethylene vinyl alcohol) nanofiber/sulfonated polystyrene microsphere composite for lysozyme isolation . Compos. Commun. , 2023 , 40 , 101570 . doi: 10.1016/j.coco.2023.101570 http://dx.doi.org/10.1016/j.coco.2023.101570
Tang T. Z. ; Gan J. P. ; Cao Z. R. ; Cheng P. ; Cheng Q. ; Mei T. ; Zhu L. P. ; Zhou F. ; Liu K. ; Wang D. Ethylene vinyl alcohol copolymer nanofibrous cation exchange chromatographic membranes with a gradient porous structure for lysozyme separation . Polymers , 2024 , 16 ( 8 ), 1112 . doi: 10.3390/polym16081112 http://dx.doi.org/10.3390/polym16081112
Anirudhan T. S. ; Aswathy E. S. ; Deepa J. R. Adsorptive separation of lysozyme from aqueous solutions using sulphonyl and carboxyl functionalized stearyl alcohol grafted epichlorohydrin . J. Polym. Environ. , 2017 , 25 ( 2 ), 101 - 114 . doi: 10.1007/s10924-016-0762-y http://dx.doi.org/10.1007/s10924-016-0762-y
Joosten N. ; Wyrębak W. ; Schenning A. ; Nijmeijer K. ; Borneman Z. On the performance of a ready-to-use electrospun sulfonated poly(ether ether ketone) membrane adsorber . Membranes , 2023 , 13 ( 6 ), 543 . doi: 10.3390/membranes13060543 http://dx.doi.org/10.3390/membranes13060543
Dou X. Y. ; Wang Q. ; Li Z. L. ; Ju J. P. ; Wang S. ; Hao L. Y. ; Sui K. Y. ; Xia Y. Z. ; Tan Y. Q. Seaweed-derived electrospun nanofibrous membranes for ultrahigh protein adsorption . Adv. Funct. Mater. , 2019 , 29 ( 46 ), 1905610 . doi: 10.1002/adfm.201905610 http://dx.doi.org/10.1002/adfm.201905610
Chen L. Y. ; Ding L. ; Liu K. K. ; Mao Z. P. ; Wang B. J. ; Feng X. L. ; Sui X. F. Lightweight, environmentally friendly, and underwater superelastic 3D-architectured aerogels for efficient protein separation . ACS Sustainable Chem. Eng. , 2021 , 9 ( 35 ), 11738 - 11747 . doi: 10.1021/acssuschemeng.1c02890 http://dx.doi.org/10.1021/acssuschemeng.1c02890
Hu X. Y. ; Tian J. H. ; Li C. ; Su H. ; Qin R. R. ; Wang Y. F. ; Cao X. ; Yang P. Amyloid-like protein aggregates: a new class of bioinspired materials merging an interfacial anchor with antifouling . Adv. Mater. , 2020 , 32 ( 23 ), 2000128 . doi: 10.1002/adma.202000128 http://dx.doi.org/10.1002/adma.202000128
杨庆敏 , 刘永春 , 陈立新 , 杨鹏 . 纤维蛋白原类淀粉样聚集膜的制备及其性能研究 . 高分子学报 , 2020 , 51 ( 8 ), 890 - 900 . doi: 10.11777/j.issn1000-3304.2020.20051 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20051
George J. ; Kumar V. V. Polymeric membranes customized with super paramagnetic iron oxide nanoparticles for effective separation of pentachlorophenol and proteins in aqueous solution . J. Mol. Struct. , 2023 , 1284 , 135449 . doi: 10.1016/j.molstruc.2023.135449 http://dx.doi.org/10.1016/j.molstruc.2023.135449
Gao N. N. ; Xie W. B. ; Xu L. J. ; Xin Q. P. ; Gao J. K. ; Shi J. J. ; Zhong J. ; Shi W. X. ; Wang H. G. ; Zhao K. Y. ; Lin L. G. Characterization of a chlorine resistant and hydrophilic TiO 2 /calcium alginate hydrogel filtration membrane used for protein purification maintaining protein structure . Int. J. Biol. Macromol. , 2023 , 253 , 126367 . doi: 10.1016/j.ijbiomac.2023.126367 http://dx.doi.org/10.1016/j.ijbiomac.2023.126367
Sun X. ; Li J. ; Xu L. Synthesis of penetrable poly(methacrylic acid- co -ethylene glycol dimethacrylate) microsphere and its HPLC application in protein separati on . Talanta , 2018 , 185 , 182 - 190 . doi: 10.1016/j.talanta.2018.03.080 http://dx.doi.org/10.1016/j.talanta.2018.03.080
Xu X. H. ; Bai B. ; Wang H. L. ; Suo Y. R. Synthesis of human hair fiber-impregnated chitosan beads functionalized with citric acid for the adsorption of lysozyme . RSC Adv. , 2017 , 7 ( 11 ), 6636 - 6647 . doi: 10.1039/c6ra26542a http://dx.doi.org/10.1039/c6ra26542a
Fu Q. X. ; Si Y. ; Duan C. ; Yan Z. S. ; Liu L. F. ; Yu J. Y. ; Ding B. Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation . Adv. Funct. Mater. , 2019 , 29 ( 13 ), 1808234 . doi: 10.1002/adfm.201808234 http://dx.doi.org/10.1002/adfm.201808234
Lu J. W. ; Jiang Y. G. ; Wen Z. H. ; Luo Z. J. ; Qiao Y. F. ; Guo L. Bacterial cellulose nanofibrous aerogels grafted with citric acid for absorption and separation of protein . Cellulose , 2024 , 31 ( 1 ), 349 - 361 . doi: 10.1007/s10570-023-05621-x http://dx.doi.org/10.1007/s10570-023-05621-x
Fu Q. X. ; Si Y. ; Liu L. F. ; Yu J. Y. ; Ding B. Elaborate design of ethylene vinyl alcohol (EVAL) nanofiber-based chromatographic media for highly efficient adsorption and extraction of proteins . J. Colloid Interface Sci. , 2019 , 555 , 11 - 21 . doi: 10.1016/j.jcis.2019.07.065 http://dx.doi.org/10.1016/j.jcis.2019.07.065
Abeyrathne E. D. N. S. ; Lee H. Y. ; Ahn D. U. Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white . Poult. Sci. , 2014 , 93 ( 4 ), 1001 - 1009 . doi: 10.3382/ps.2013-03403 http://dx.doi.org/10.3382/ps.2013-03403
Abeyrathne E. D. N. S. ; Lee H. Y. ; Ahn D. U. Separation of ovotransferrin and ovomucoid from chicken egg white . Poult. Sci. , 2014 , 93 ( 4 ), 1010 - 1017 . doi: 10.3382/ps.2013-03649 http://dx.doi.org/10.3382/ps.2013-03649
Ji S. N. ; Ahn D. U. ; Zhao Y. L. ; Li K. ; Li S. G. ; Huang X. An easy and rapid separation method for five major proteins from egg white: successive extraction and MALDI-TOF-MS identification . Food Chem. , 2020 , 315 , 126207 . doi: 10.1016/j.foodchem.2020.126207 http://dx.doi.org/10.1016/j.foodchem.2020.126207
Lei G. H. ; Xiong X. H. ; Wei Y. M. ; Zheng X. H. ; Zheng J. B. Novel tetrazole-functionalized ion exchanger for weak cation-exchange chromatography of proteins . J. Chromatogr. A , 2008 , 1187 ( 1-2 ), 197 - 204 . doi: 10.1016/j.chroma.2008.02.031 http://dx.doi.org/10.1016/j.chroma.2008.02.031
Wang C. Z. ; Shen J. W. ; Zhu J. T. ; Bo C. M. ; Wei Y. M. Tetrazole-functionalized cation-exchange membrane adsorbers with high binding capacity and unique separation feature for protein . J. Chromatogr. B , 2018 , 1097 , 18 - 26 . doi: 10.1016/j.jchromb.2018.08.035 http://dx.doi.org/10.1016/j.jchromb.2018.08.035
Duncton M. A. J. ; Murray R. B. ; Park G. ; Singh R. Tetrazolone as an acid bioisostere: application to marketed drugs containing a carboxylic acid . Org. Biomol. Chem. , 2016 , 14 ( 39 ), 9343 - 9347 . doi: 10.1039/c6ob01646d http://dx.doi.org/10.1039/c6ob01646d
Wang H. Y. ; Sun Y. ; Zhang S. L. ; Luo J. ; Shi Q. H. Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization . Biochem. Eng. J. , 2016 , 113 , 19 - 29 . doi: 10.1016/j.bej.2016.05.006 http://dx.doi.org/10.1016/j.bej.2016.05.006
Han Y. Y. ; Jin J. ; Cui J. ; Jiang W. Effect of hydrophilicity of end-grafted polymers on protein adsorption behavior: a Monte Carlo study . Colloids Surf. B Biointerfaces , 2016 , 142 , 38 - 45 . doi: 10.1016/j.colsurfb.2016.01.064 http://dx.doi.org/10.1016/j.colsurfb.2016.01.064
Zhang S. L. ; Zhao M. ; Yang W. ; Luo J. ; Sun Y. ; Shi Q. H. A novel polymer-grafted cation exchanger for high-capacity protein chromatography: the role of polymer architecture . Biochem. Eng. J. , 2017 , 128 , 218 - 227 . doi: 10.1016/j.bej.2017.10.006 http://dx.doi.org/10.1016/j.bej.2017.10.006
Zhang W. N. ; Cheng P. P. ; Cheng J. ; Li N. ; Wang Y. ; Yang J. Y. ; Qiu X. Y. ; Tan H. ; Yu H. Z. Ultrathin nanoporous membrane fabrication based on block copolymer micelles . J. Membr. Sci. , 2019 , 570 , 427 - 435 . doi: 10.1016/j.memsci.2018.10.066 http://dx.doi.org/10.1016/j.memsci.2018.10.066
Ma X. B. ; Yan T. Y. ; Hou F. R. ; Chen W. J. ; Miao S. ; Liu D. H. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: linking the enhanced emulsifying properties to physicochemical and structural properties . Ultrason. Sonochem. , 2019 , 59 , 104748 . doi: 10.1016/j.ultsonch.2019.104748 http://dx.doi.org/10.1016/j.ultsonch.2019.104748
de Boer K. ; Schroën K. Polymer-based stimuli-responsive systems for protein capture: capacity, reversibility, and selectivity . Sep. Purif. Technol. , 2024 , 337 , 126288 . doi: 10.1016/j.seppur.2024.126288 http://dx.doi.org/10.1016/j.seppur.2024.126288
Ye H. ; Gao C. ; Yang G. D. ; Zhou Y. N. ; Jiao R. ; Zhang Y. Z. ; Zhao L. Z. ; Xin Q. P. ; Li H. Dual-gating pH-responsive membranes with the heterogeneous structure for whey protein fractionation . J. Membr. Sci. , 2022 , 641 , 119849 . doi: 10.1016/j.memsci.2021.119849 http://dx.doi.org/10.1016/j.memsci.2021.119849
Mu L. ; Liu Y. ; Cai S. Y. ; Kong J. L. A smart surface in a microfluidic chip for controlled protein separation . Chem. , 2007 , 13 ( 18 ), 5113 - 5120 . doi: 10.1002/chem.200601624 http://dx.doi.org/10.1002/chem.200601624
Qiu X. Y. ; Yu H. Z. ; Peinemann K. V. Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes . Procedia Eng. , 2012 , 44 , 461 - 463 . doi: 10.1016/j.proeng.2012.08.450 http://dx.doi.org/10.1016/j.proeng.2012.08.450
Sundaram H. S. ; Ella-Menye J. R. ; Brault N. D. ; Shao Q. ; Jiang S. Y. Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation . Chem. Sci. , 2014 , 5 ( 1 ), 200 - 205 . doi: 10.1039/c3sc52233d http://dx.doi.org/10.1039/c3sc52233d
Delcroix M. F. ; Laurent S. ; Huet G. L. ; Dupont-Gillain C. C. Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes . Acta Biomater. , 2015 , 11 , 68 - 79 . doi: 10.1016/j.actbio.2014.09.010 http://dx.doi.org/10.1016/j.actbio.2014.09.010
Zhou J. ; Cai Y. ; Wan Y. T. ; Wu B. H. ; Liu J. B. ; Zhang X. X. ; Hu W. W. ; Cohen Stuart M. A. ; Wang J. Y. Protein separation by sequential selective complex coacervation . J. Colloid Interface Sci. , 2023 , 650 , 2065 - 2074 . doi: 10.1016/j.jcis.2023.06.119 http://dx.doi.org/10.1016/j.jcis.2023.06.119
Hollmann O. ; Czeslik C. Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization . Langmuir , 2006 , 22 ( 7 ), 3300 - 3305 . doi: 10.1021/la053110y http://dx.doi.org/10.1021/la053110y
Wu Z. X. ; Ji X. ; He Q. L. ; Gu H. B. ; Zhang W. X. ; Deng Z. L. Nanocelluloses fine-tuned polyvinylidene fluoride (PVDF) membrane for enhanced separation and antifouling . Carbohydr. Polym. , 2024 , 323 , 121383 . doi: 10.1016/j.carbpol.2023.121383 http://dx.doi.org/10.1016/j.carbpol.2023.121383
Li Y. ; Chung T. S. Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation . J. Membr. Sci. , 2008 , 309 ( 1-2 ), 45 - 55 . doi: 10.1016/j.memsci.2007.10.006 http://dx.doi.org/10.1016/j.memsci.2007.10.006
Gao W. ; Wang Y. ; Zhang F. ; Zhang S. ; Lian H. Z. Tetrasulfonate calix [4 ] arene modified large pore mesoporous silica microspheres: synthesis, characterization, and application in protein separation. Talanta , 2021 , 226 , 122171 . doi: 10.1016/j.talanta.2021.122171 http://dx.doi.org/10.1016/j.talanta.2021.122171
0
浏览量
116
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构