浏览全部资源
扫码关注微信
1.宁波大学材料科学与化学工程学院 宁波 315211
2.中国科学院宁波材料技术与工程研究所 高分子与复合材料实验室 宁波 315201
3.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
E-mail: yongyan.pang@nimte.ac.cn
收稿日期:2024-12-23,
录用日期:2025-02-17,
网络出版日期:2025-03-28,
纸质出版日期:2025-06-20
移动端阅览
吴王坚, 庞永艳, 陈汉龙, 陈全, 郑文革. PS和PMMA的发泡温度窗口对厚度和饱和压力的依赖性研究. 高分子学报, 2025, 56(6), 1026-1038
Wu, W. J.; Pang, Y. Y.; Chen, H. L.; Chen, Q.; Zheng, W. G. Dependence of foaming temperature window of polystyrene and poly(methyl methacrylate) on thickness and saturation pressure. Acta Polymerica Sinica, 2025, 56(6), 1026-1038
吴王坚, 庞永艳, 陈汉龙, 陈全, 郑文革. PS和PMMA的发泡温度窗口对厚度和饱和压力的依赖性研究. 高分子学报, 2025, 56(6), 1026-1038 DOI: 10.11777/j.issn1000-3304.2025.24302. CSTR: 32057.14.GFZXB.2025.7362.
Wu, W. J.; Pang, Y. Y.; Chen, H. L.; Chen, Q.; Zheng, W. G. Dependence of foaming temperature window of polystyrene and poly(methyl methacrylate) on thickness and saturation pressure. Acta Polymerica Sinica, 2025, 56(6), 1026-1038 DOI: 10.11777/j.issn1000-3304.2025.24302. CSTR: 32057.14.GFZXB.2025.7362.
系统研究了样品厚度和饱和压力对聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)发泡行为和发泡窗口的影响规律. 首先,研究了样品厚度和饱和压力对PS和PMMA对CO
2
吸附行为的影响;然后,利用釜压发泡法制备了PS和PMMA发泡材料,并研究了厚度和饱和压力对泡孔结构和膨胀倍率的影响;最后,根据泡孔结构和膨胀倍率确定了发泡温度的上下限,界定出了发泡温度窗口,并探讨了厚度和饱和压力对发泡温度窗口的影响规律. 结果表明,饱和压力增大,PS和PMMA对CO
2
的饱和吸附量均增大,相同饱和压力下,PMMA的饱和吸附量更大;在较小的饱和压力下,厚度越大,PMMA对CO
2
的吸附越慢. 厚度和饱和压力显著影响PS和PMMA的泡孔结构和膨胀倍率,饱和压力增大,CO
2
的塑化作用增强,厚度对PMMA的发泡影响更显著. 饱和压力增大,PS和PMMA的发泡温度上下限均向低温方向移动,PMMA对厚度和饱和压力的变化更敏感,PMMA比PS的发泡温度窗口更窄.
In the present work
the effect of sample thickness and saturation pressure on foaming behavior and foaming window of polystyrene (PS) and poly(methyl methacrylate) (PMMA) was systematically studied. First
the effect of sample thickness and saturation pressure on sorption of CO
2
of PS and PMMA was studied; Then
PS and PMMA foams were prepared
via
a batch foaming process
and the effect of sample thickness and saturation pressure on cell structure and expansion ratio was studied; Last
the upper and the lower limits of the foaming temperature were defined based on the cell structure and the expansion ratio
and hence the foaming temperature window was obtained
and the effect of sample thickness and saturation pressure on foaming temperature window was studied. The results show that the higher the saturation pressure was
and the higher the sorption of CO
2
of PS and PMMA was. The sorption of CO
2
in PMMA was larger than in PS under the same saturation pressure. Under a lower saturation pressure
PMMA with a larger thickness showed slower sorption of CO
2
. The sample thickness and saturation pressure significantly affected the cell structur
e and the expansion ratio. A higher saturation pressure showed a more obvious plasticization effect of CO
2
. The sample thickness showed a more significant effect on foaming of PMMA. A higher saturation pressure made the upper and the lower foaming temperature limits move to the lower temperature direction. PMMA was more sensitive to the change in thickness and saturation pressure
and had much narrower foaming temperature window than PS did.
翟文涛 , 江俊杰 . 热塑弹性体超临界流体间歇发泡过程中的基本问题 . 高分子学报 , 2024 , 55 ( 4 ), 369 - 395 .
刘云杰 , 金碧辉 , 马昊宇 , 龚鹏剑 , 牛艳华 , Park , C . B ., 李光宪. 乙烯-乙烯醇共聚物/碳纳米管复合发泡材料的电磁屏蔽性能研究. 高分子学报 , 2023 , 54 ( 1 ), 106 - 120 .
邵玮玮 , 庞永艳 , 严铭 , 刘啸凤 , 郑文革 . PET/纳米SiO 2 复合材料发泡行为和光学性能 . 工程塑料应用 , 2024 , 52 ( 5 ), 50 - 57 . doi: 10.3969/j.issn.1001-3539.2024.05.008 http://dx.doi.org/10.3969/j.issn.1001-3539.2024.05.008
Lee K. M. ; Lee E. K. ; Kim S. G. ; Park C. B. ; Naguib H. E. Bi-cellular foam structure of polystyrene from extrusion foaming process . J. Cell. Plast. , 2009 , 45 ( 6 ), 539 - 553 . doi: 10.1177/0021955x09343632 http://dx.doi.org/10.1177/0021955x09343632
Qiang W. ; Zhao L. ; Liu T. ; Liu Z. ; Gao X. L. ; Hu D. D. Systematic study of alcohols based co-blowing agents for polystyrene foaming in supercritical CO 2 : toward the high efficiency of foaming process and foam structure optimization . J. Supercrit. Fluids , 2020 , 158 , 104718 . doi: 10.1016/j.supflu.2019.104718 http://dx.doi.org/10.1016/j.supflu.2019.104718
Forest C. ; Chaumont P. ; Cassagnau P. ; Swoboda B. ; Sonntag P. CO 2 nano-foaming of nanostructured PMMA . Polymer , 2015 , 58 , 76 - 87 . doi: 10.1016/j.polymer.2014.12.048 http://dx.doi.org/10.1016/j.polymer.2014.12.048
Gebremedhin K. F. ; Tolcha S. D. ; Yeh S. K. Fabrication of flat and sizeable nanocellular polymethyl methacrylate (PMMA) foam with tunable thermal conductivity . Polym. Eng. Sci. , 2024 , 64 ( 10 ), 4973 - 4992 . doi: 10.1002/pen.26895 http://dx.doi.org/10.1002/pen.26895
Giermanska J. ; Ben Jabrallah S. ; Delorme N. ; Vignaud G. ; Chapel J. P. Direct experimental evidences of the density variation of ultrathin polymer films with thickness . Polymer , 2021 , 228 , 123934 . doi: 10.1016/j.polymer.2021.123934 http://dx.doi.org/10.1016/j.polymer.2021.123934
Martín-de León J. ; Cimavilla-Román P. ; Bernardo V. ; Solórzano E. ; Kardjilov N. ; Rodríguez-Pérez M. A. Cold neutron transmission for the in situ analysis of the gas diffusion in polymers . J. Supercrit. Fluids , 2021 , 177 , 105331 . doi: 10.1016/j.supflu.2021.105331 http://dx.doi.org/10.1016/j.supflu.2021.105331
Higashida N. ; Kressler J. ; Yukioka S. ; Inoue T. Ellipsometric measurements of positive η parameters between dissimilar polymers and their temperature dependence . Macromolecules , 1992 , 25 ( 20 ), 5259 - 5262 . doi: 10.1021/ma00046a023 http://dx.doi.org/10.1021/ma00046a023
Kressler J. ; Higashida N. ; Inoue T. ; Heckmann W. ; Seitz F. Study of polymer-polymer interfaces: a comparison of ellipsometric and TEM data of PMMA/polystyrene and PMMA/SAN systems . Macromolecules , 1993 , 26 ( 8 ), 2090 - 2094 . doi: 10.1021/ma00060a043 http://dx.doi.org/10.1021/ma00060a043
Han X. M. ; Shen J. ; Huang H. X. ; Tomasko D. L. ; Lee L. J. CO 2 foaming based on polystyrene/poly(methyl methacrylate) blend and nanoclay . Polym. Eng. Sci. , 2007 , 47 ( 2 ), 103 - 111 . doi: 10.1002/pen.20679 http://dx.doi.org/10.1002/pen.20679
Liu W. ; Pang Y. Y. ; Wang K. ; Zheng W. G. Structure evolution driven by phase separation and the corresponding foaming behavior of polystyrene/poly(methyl methacrylate) blends via a batch foaming process . J. Appl. Polym. Sci. , 2018 , 135 ( 39 ), 46704 . doi: 10.1002/app.46704 http://dx.doi.org/10.1002/app.46704
Liu W. ; Pang Y. Y. ; Guo B. J. ; Qin K. P. ; Dong X. ; Wang D. J. ; Zheng W. G. Verification of the competitive effect between heterogeneous and gas diffusion-induced cell nucleation in determining the cell structure in polystyrene/poly(methyl methacrylate) blends via structural evolution driven by phase separation . Ind. Eng. Chem. Res. , 2019 , 58 ( 39 ), 18439 - 18447 . doi: 10.1021/acs.iecr.9b03147 http://dx.doi.org/10.1021/acs.iecr.9b03147
Liu W. ; Pang Y. Y. ; Wu M. H. ; Qin K. P. ; Zheng W. G. Dependence of the foaming window of a polystyrene/poly(methyl methacrylate) blend on structural evolution driven by phase separation . Polymer , 2019 , 166 , 63 - 71 . doi: 10.1016/j.polymer.2019.01.050 http://dx.doi.org/10.1016/j.polymer.2019.01.050
Zou F. F. ; Chen J. ; Liao X. ; Song P. W. ; Li G. X. Efficient electrical conductivity and electromagnetic interference shielding performance of double percolated polymer composite foams by phase coarsening in supercritical CO 2 . Compos. Sci. Technol. , 2021 , 213 , 108895 . doi: 10.1016/j.compscitech.2021.108895 http://dx.doi.org/10.1016/j.compscitech.2021.108895
Pang Y. Y. ; Zhang X. ; Guo B. J. ; Wang Z. J. ; Fang W. X. ; Li J. ; Zheng W. G. Unprecedented cell structure variation in multilayered alternating PS/PMMA foams . Polymer , 2021 , 237 , 124386 . doi: 10.1016/j.polymer.2021.124386 http://dx.doi.org/10.1016/j.polymer.2021.124386
Sumey J. L. ; Sarver J. A. ; Kiran E. Foaming of polystyrene and poly(methyl methacrylate) multilayered thin films with supercritical carbon dioxide . J. Supercrit. Fluids , 2019 , 145 , 243 - 252 . doi: 10.1016/j.supflu.2018.12.001 http://dx.doi.org/10.1016/j.supflu.2018.12.001
Chen Z. ; Faysal A. A. ; Embabi M. ; Yu L. ; Park C. B. ; Lee P. C. A path to nano-cellular foams: constrained cell nucleation and growth in micro-/nano-layered structures . Polymer , 2021 , 235 , 124272 . doi: 10.1016/j.polymer.2021.124272 http://dx.doi.org/10.1016/j.polymer.2021.124272
Zhao J. X. ; Li H. B. ; Choi D. ; Lee P. C. Micro-layered film and foam alternating structures: a novel passive daytime radiative cooling material . Nano Energy , 2024 , 127 , 109695 . doi: 10.1016/j.nanoen.2024.109695 http://dx.doi.org/10.1016/j.nanoen.2024.109695
Wang Z. J. ; Wang J. G. ; Pang Y. Y. ; Zhu J. ; Zheng W. G. Dependence of the foaming window of poly(ethylene terephthalate- co -ethylene 2,5-furandicarboxylate) copolyesters on FDCA content . Polymer , 2022 , 254 , 125101 . doi: 10.1016/j.polymer.2022.125101 http://dx.doi.org/10.1016/j.polymer.2022.125101
Guo B. J. ; Pang Y. Y. ; Cao X. ; Chen Q. ; Zheng W. G. A creative approach to prepare structure-tunable multilayered PMMA/PS/PMMA foams . Polymer , 2020 , 209 , 123061 . doi: 10.1016/j.polymer.2020.123061 http://dx.doi.org/10.1016/j.polymer.2020.123061
Wu M. H. ; Pang Y. Y. ; Wang Z. J. ; Wu F. ; Zheng W. G. From the perspective of cells as dispersed phase in foam injection molding: cell deformation of PP/PTFE foams . Polymer , 2023 , 272 , 125842 . doi: 10.1016/j.polymer.2023.125842 http://dx.doi.org/10.1016/j.polymer.2023.125842
Versteeg F. G. ; de M R Lima G. ; Picchioni F. ; Druetta P. Solubility of supercritical CO 2 in polystyrene . J. Supercrit. Fluids , 2024 , 213 , 106374 . doi: 10.1016/j.supflu.2024.106374 http://dx.doi.org/10.1016/j.supflu.2024.106374
Shieh, Y. T.; Liu, K. H. Solubility of CO 2 in glassy PMMA and PS over a wide pressure range: the effect of carbonyl groups . J. Polym. Res. , 2002 , 9 ( 2 ), 107 - 113 . doi: 10.1023/A:1021189800844 http://dx.doi.org/10.1023/A:1021189800844
Kiran E. ; Sarver J. A. ; Hassler J. C. Solubility and diffusivity of CO 2 and N 2 in polymers and polymer swelling, glass transition, melting, and crystallization at high pressure: a critical review and pers pectives on experimental methods, data, and modeling . J. Supercrit. Fluids , 2022 , 185 , 105378 . doi: 10.1016/j.supflu.2021.105378 http://dx.doi.org/10.1016/j.supflu.2021.105378
Li R. S. ; Ye N. ; Shaayegan V. ; Fang T. Experimental measurement of CO 2 diffusion in PMMA and its effect on microcellular foaming . J. Supercrit. Fluids , 2018 , 135 , 180 - 187 . doi: 10.1016/j.supflu.2018.01.024 http://dx.doi.org/10.1016/j.supflu.2018.01.024
Ciulla M. ; Canale V. ; Wolicki R. D. ; Pilato S. ; Bruni P. ; Ferrari S. ; Siani G. ; Fontana A. ; Di Profio P. Enhanced CO 2 capture by sorption on electrospun poly(methyl methacrylate) . Separations , 2023 , 10 ( 9 ), 505 . doi: 10.3390/separations10090505 http://dx.doi.org/10.3390/separations10090505
Ushiki I. ; Hayashi S. ; Kihara S. I. ; Takishima S. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in poly(methyl methacrylate) at high temperatures and pressures . J. Supercrit. Fluids , 2019 , 152 , 104565 . doi: 10.1016/j.supflu.2019.104565 http://dx.doi.org/10.1016/j.supflu.2019.104565
崔文豪 , 顾瑞星 , 米皓阳 . 超临界二氧化碳流场作用下线型聚乙烯剪切塑化行为的分子动力学模拟研究 . 高分子学报 , 2024 , 55 ( 10 ), 1414 - 1429 . doi: 10.11777/j.issn1000-3304.2024.24076 http://dx.doi.org/10.11777/j.issn1000-3304.2024.24076
Liu J. ; Qin S. X. ; Wang G. ; Zhang H. B. ; Zhou H. P. ; Gao Y. Batch foaming of ultra-high molecular weight polyethylene with supercritical carbon dioxide: influence of temperature and pressure . Polym. Test. , 2021 , 93 , 106974 . doi: 10.1016/j.polymertesting.2020.106974 http://dx.doi.org/10.1016/j.polymertesting.2020.106974
Sarver J. A. ; Hassler J. C. ; Kiran E. Linking thermophysical and rheological properties to the selection of CO 2 foaming conditions of rubbery elastomers using the relative rigidity reduction path . J. Supercrit. Fluids , 2020 , 166 , 105015 . doi: 10.1016/j.supflu.2020.105015 http://dx.doi.org/10.1016/j.supflu.2020.105015
Wang K. ; Pang Y. Y. ; Wu F. ; Zhai W. T. ; Zheng W. G. Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO 2 . J. Supercrit. Fluids , 2016 , 110 , 65 - 74 . doi: 10.1016/j.supflu.2015.12.012 http://dx.doi.org/10.1016/j.supflu.2015.12.012
Yang Y. G. ; Liao X. ; Lv C. F. ; Wang B. ; Zou F. F. ; Li G. X. Ultrasound and H 2 O assisted scCO 2 foaming technology for preparation of PS/PMMA composite foams with ultra-lightweight and super thermal-insulation . Compos. Part A Appl. Sci. Manuf. , 2023 , 169 , 107527 . doi: 10.1016/j.compositesa.2023.107527 http://dx.doi.org/10.1016/j.compositesa.2023.107527
Yang Y. G. ; Zou F. F. ; Lv C. F. ; Fan Z. Z. ; Li G. X. ; Liao X. Super thermal-insulation PS/PMMA/CNTs composite foams with shape recovery property formed by the synergy of ultrasound and H 2 O in scCO 2 foaming . Compos. Sci. Technol. , 2024 , 245 , 110343 . doi: 10.1016/j.compscitech.2023.110343 http://dx.doi.org/10.1016/j.compscitech.2023.110343
Pang Y. Y. ; Cao Y. Y. ; Zheng W. G. ; Park C. B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams . Chem. Eng. J. , 2022 , 430 , 132662 . doi: 10.1016/j.cej.2021.132662 http://dx.doi.org/10.1016/j.cej.2021.132662
Qiu C. ; Zhu P. ; Dong X. ; Wang D. J. Supercritical foaming of novel poly(ether- b -amide) elastomer and compression property characterization . J. Appl. Polym. Sci. , 2024 , 141 ( 23 ), e 55455 . doi: 10.1002/app.55455 http://dx.doi.org/10.1002/app.55455
0
浏览量
156
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构