浏览全部资源
扫码关注微信
生物医药功能材料国家地方联合工程研究中心 南京师范大学化学与材料科学学院 南京 210023
[ "毛春,男,1972年生,2004年6月毕业于南京大学化学与化工学院,获理学博士学位;2004年9月~2006年2月,韩国科学技术研究院,从事博士后研究;2006年10月~2008年8月,韩国梨花女子大学,从事博士后研究;2008年12月至今,南京师范大学化学与材料科学学院工作. 获得南京师范大学弘爱精英教师称号;生物医药功能材料国家地方联合工程研究中心主任;南京鼓楼医院特聘专家;国际学术期刊Oncology Research编委. 近年来在Nat. Nanotechnol.、Nat. Commun.、Sci. Adv.、Adv. Mater.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.等国际期刊上发表学术论文一百六十余篇;申请或授权国家发明专利20余件;获得2009年度教育部高等学校科学研究优秀成果奖(自然科学)一等奖1项;2021年中国产学研合作创新成果奖一等奖1项;2022年江苏省科技进步二等奖1项;2023年江苏省高等学校科学研究成果奖三等奖1项;主持和参与国家自然科学基金项目和省部级科研项目10项;企业横向项目3项;撰写生物医用微纳米机器人英文专业书籍“Biomedical Micro- and Nanorobots in Disease Treatment. Design,Preparation, and Applications”(2023年3月出版发行)." ]
[ "万密密,女,1987年生,南京师范大学教授、国家优秀青年科学基金获得者、江苏省高校“青蓝工程”优秀青年骨干教师. 长期致力于生物医用微纳米马达研究,以第一/通讯作者在Nat. Nanotechnol.、Sci. Adv.、Nat. Commun.、Adv. Mater.等国际期刊发表论文65篇;主持国家自然科学基金优青/面上/青年项目、国家博士后基金等国家级课题4项,研发的“纳米马达”获中国发明专利5项(第一发明人),相关成果获江苏省教育厅自然科学家三等奖(排名第二)." ]
收稿日期:2024-12-29,
录用日期:2025-02-17,
网络出版日期:2025-04-27,
移动端阅览
夏雪, 毛春, 万密密. 生物医用高分子纳米马达趋化体系: 新一代药物递送载体. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.24311
Xia, X.; Mao, C.; Wan, M. M. Biomedical polymer nanomotor chemotactic system: a new generation of drug delivery system. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.24311
夏雪, 毛春, 万密密. 生物医用高分子纳米马达趋化体系: 新一代药物递送载体. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.24311 DOI: CSTR: 32057.14.GFZXB.2025.7363.
Xia, X.; Mao, C.; Wan, M. M. Biomedical polymer nanomotor chemotactic system: a new generation of drug delivery system. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.24311 DOI: CSTR: 32057.14.GFZXB.2025.7363.
纳米马达是一类可沿化学物质浓度梯度矢量场进行定向运动的新型纳米材料,其特有的趋化运动性能可望为药物的精准递送带来新的效应. 然而,受限于疾病的复杂微环境,构建可有效趋化靶向病变组织的纳米马达趋化体系依然面临挑战. 作者团队结合高分子纳米材料的独特优势,在发展新策略构建高分子纳米马达趋化体系方面取得了一系列创新成果. 本专论从高分子纳米马达趋化体系的构建方法出发,重点阐述了一类可在体内疾病微环境发生趋化运动的高分子纳米马达的通用型构建策略,总结归纳了它们与不同治疗剂的组装规律及其在重大疾病治疗中的相关机制,并对该领域未来的发展方向进行展望.
The chemotactic system of nanomotor is a new kind of nanomaterial that can move along the concentration gradient vector field of chemical substances. Its unique chemotactic movement performance is expected to bring new effects for the efficient and accurate delivery of drugs. However
due to the complex disease microenvironment within the body
constructing a nanomotor chemotactic system that can effectively target disease tissues remains a challenge. Combining the unique advantages of polymer nanomaterials
the author's team has made a series of innovative achievements in developing new strategies to build polymer nanomotor chemotatic systems and developing new
methods to assemble them with therapeutic agents. Starting from the construction method of polymer nanomotor chemotactic system
this monograph focuses on the general construction strategy of a kind of polymer nanomotor that can move in the disease microenvironment
in vivo
summarizes their assembly strategies with different therapeutic agents and their related mechanisms in the treatment of a variety of major diseases
and prospects the future development direction of this field.
You M. ; Chen C. R. ; Xu L. L. ; Mou F. Z. ; Guan J. G. Intelligent micro/nanomotors with taxis . Acc. Chem. Res. , 2018 , 51 ( 12 ), 3006 - 3014 . doi: 10.1021/acs.accounts.8b00291 http://dx.doi.org/10.1021/acs.accounts.8b00291
Chaban B. ; Velocity Hughes H. ; Beeby M. The flagellum in bacterial pathogens: for motility and a whole lot more . Semin. Cell Dev. Biol. , 2015 , 46 , 91 - 103 . doi: 10.1016/j.semcdb.2015.10.032 http://dx.doi.org/10.1016/j.semcdb.2015.10.032
Mears P. J. ; Koirala S. ; Rao C. V. ; Golding I. ; Chemla Y. R. Escherichia coli swimming is robust against variations in flagellar number . eLife , 2014 , 3 , e01916 . doi: 10.7554/elife.01916 http://dx.doi.org/10.7554/elife.01916
Kolaczkowska E. ; Kubes P. Neutrophil recruitment and function in health and inflammation . Nat. Rev. Immunol. , 2013 , 13 ( 3 ), 159 - 175 . doi: 10.1038/nri3399 http://dx.doi.org/10.1038/nri3399
Etulain J. Platelets in wound healing and regenerative medicine . Platelets , 2018 , 29 ( 6 ), 556 - 568 . doi: 10.1080/09537104.2018.1430357 http://dx.doi.org/10.1080/09537104.2018.1430357
Turner R. M. Moving to the beat: a review of mammalian sperm motility regulation . Reprod. Fertil. Dev. , 2006 , 18 ( 1-2 ), 25 - 38 . doi: 10.1071/rd05120 http://dx.doi.org/10.1071/rd05120
Xue J. W. ; Zhao Z. K. ; Zhang L. ; Xue L. J. ; Shen S. Y. ; Wen Y. J. ; Wei Z. Y. ; Wang L. ; Kong L. Y. ; Sun H. B. ; Ping Q. N. ; Mo R. ; Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence . Nat. Nanotechnol. , 2017 , 12 ( 7 ), 692 - 700 . doi: 10.1038/nnano.2017.54 http://dx.doi.org/10.1038/nnano.2017.54
Li M. ; Li S. Y. ; Zhou H. ; Tang X. F. ; Wu Y. ; Jiang W. ; Tian Z. G. ; Zhou X. C. ; Yang X. Z. ; Wang Y. C. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy . Nat. Commun. , 2020 , 11 ( 1 ), 1126 . doi: 10.1038/s41467-020-14963-0 http://dx.doi.org/10.1038/s41467-020-14963-0
Zheng J. R. ; Qi R. Q. ; Dai C. L. ; Li G. ; Sang M. M. Enzyme catalysis biomotor engineering of neutrophils for nanodrug delivery and cell-based thrombolytic therapy . ACS Nano , 2022 , 16 ( 2 ), 2330 - 2344 . doi: 10.1021/acsnano.1c08538 http://dx.doi.org/10.1021/acsnano.1c08538
Nguyen H. V. ; Faivre V. Targeted drug delivery therapies inspired by natural taxes . J. Control. Release , 2020 , 322 , 439 - 456 . doi: 10.1016/j.jconrel.2020.04.005 http://dx.doi.org/10.1016/j.jconrel.2020.04.005
Wan M. M. ; Wang Q. ; Li X. Y. ; Xu B. ; Fang D. ; Li T. ; Yu Y. Q. ; Fang L. Y. ; Wang Y. ; Wang M. ; Wang F. H. ; Mao C. ; Shen J. ; Wei J. Systematic research and evaluation models of nanomotors for cancer combined therapy . Angew. Chem. Int. Ed. , 2020 , 59 ( 34 ), 14458 - 14465 . doi: 10.1002/anie.202002452 http://dx.doi.org/10.1002/anie.202002452
Wan M. M. ; Wang Q. ; Wang R. L. ; Wu R. ; Li T. ; Fang D. ; Huang Y. Y. ; Yu Y. Q. ; Fang L. Y. ; Wang X. W. ; Zhang Y. H. ; Miao Z. Y. ; Zhao B. ; Wang F. H. ; Mao C. ; Jiang Q. ; Xu X. Q. ; Shi D. Q. Platelet-derived porous nanomotor for thrombus therapy . Sci. Adv. , 2020 , 6 ( 22 ), eaaz 9014 . doi: 10.1126/sciadv.aaz9014 http://dx.doi.org/10.1126/sciadv.aaz9014
Wan M. M. ; Li T. ; Chen H. ; Mao C. ; Shen J. Biosafety, functionalities, and applications of biomedical micro/nanomotors . Angew. Chem. Int. Ed. , 2021 , 60 ( 24 ), 13158 - 13176 . doi: 10.1002/anie.202013689 http://dx.doi.org/10.1002/anie.202013689
Ji Y. X. ; Lin X. K. ; Zhang H. Y. ; Wu Y. J. ; Li J. B. ; He Q. Thermoresponsive polymer brush modulation on the direction of motion of phoretically driven Janus micromotors . Angew. Chem. , 2019 , 131 ( 13 ), 4228 - 4232 . doi: 10.1002/ange.201812860 http://dx.doi.org/10.1002/ange.201812860
Lin J. W. ; Lian C. X. ; Xu L. L. ; Li Z. S. ; Guan Q. X. ; Wei W. Y. ; Dai H. L. ; Guan J. G. Hyperglycemia targeting nanomotors for accelerated healing of diabetic wounds by efficient microenvironment remodeling . Adv. Funct. Mater. , 2024 , 2417146 . doi: 10.1002/adfm.202417146 http://dx.doi.org/10.1002/adfm.202417146
Yang J. ; Zhang C. ; Wang X. D. ; Wang W. X. ; Xi N. ; Liu L. Q. Development of micro- and nanorobotics: a review . Sci. China Technol. Sci. , 2019 , 62 ( 1 ), 1 - 20 . doi: 10.1007/s11431-018-9339-8 http://dx.doi.org/10.1007/s11431-018-9339-8
Hong Y. Y. ; Blackman N. M. K. ; Kopp N. D. ; Sen A. ; Velegol D. Chemotaxis of nonbiological colloidal rods . Phys. Rev. Lett. , 2007 , 99 ( 17 ), 178103 . doi: 10.1103/physrevlett.99.178103 http://dx.doi.org/10.1103/physrevlett.99.178103
Abdelmohsen L. K. E. A. ; Nijemeisland M. ; Pawar G. M. ; Janssen G. A. ; Nolte R. J. M. ; van Hest J. C. M. ; Wilson D. A. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor . ACS Nano , 2016 , 10 ( 2 ), 2652 - 2660 . doi: 10.1021/acsnano.5b07689 http://dx.doi.org/10.1021/acsnano.5b07689
Xu D. D. ; Hu J. ; Pan X. ; Sánchez S. ; Yan X. H. ; Ma X. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions . ACS Nano , 2021 , 15 ( 7 ), 11543 - 11554 . doi: 10.1021/acsnano.1c01573 http://dx.doi.org/10.1021/acsnano.1c01573
Yang Z. L. ; Wang L. M. ; Gao Z. X. ; Hao X. M. ; Luo M. ; Yu Z. L. ; Guan J. G. Ultrasmall enzyme-powered Janus nanomotor working in blood circulation system . ACS Nano , 2023 , 17 ( 6 ), 6023 - 6035 . doi: 10.1021/acsnano.3c00548 http://dx.doi.org/10.1021/acsnano.3c00548
Liu M. L. ; Chen L. ; Zhao Z. W. ; Liu M. C. ; Zhao T. C. ; Ma Y. Z. ; Zhou Q. Y. ; Ibrahim Y. S. ; Elzatahry A. A. ; Li X. M. ; Zhao D. Y. Enzyme-based mesoporous nanomotors with near-infrared optical brakes . J. Am. Chem. Soc. , 2022 , 144 ( 9 ), 3892 - 3901 . doi: 10.1021/jacs.1c11749 http://dx.doi.org/10.1021/jacs.1c11749
Sengupta S. ; Dey K. K. ; Muddana H. S. ; Tabouillot T. ; Ibele M. E. ; Butler P. J. ; Sen A. Enzyme molecules as nanomotors . J. Am. Chem. Soc. , 2013 , 135 ( 4 ), 1406 - 1414 . doi: 10.1021/ja3091615 http://dx.doi.org/10.1021/ja3091615
Zhou C. ; Gao C. Y. ; Wu Y. J. ; Si T. Y. ; Yang M. C. ; He Q. Torque-driven orientation motion of chemotactic colloidal motors . Angew. Chem. Int. Ed. , 2022 , 61 ( 10 ), e 202116013 . doi: 10.1002/anie.202116013 http://dx.doi.org/10.1002/anie.202116013
Ahmad N. ; Ansari M. Y. ; Haqqi T. M. Role of iNOS in osteoarthritis: pathological and therapeutic aspects . J. Cell. Physiol. , 2020 , 235 ( 10 ), 6366 - 6376 . doi: 10.1002/jcp.29607 http://dx.doi.org/10.1002/jcp.29607
Kristof A. S. ; Goldberg P. ; Laubach V. ; Hussain S. N. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury . Am. J. Respir. Crit. Care Med. , 1998 , 158 ( 6 ), 1883 - 1889 . doi: 10.1164/ajrccm.158.6.9802100 http://dx.doi.org/10.1164/ajrccm.158.6.9802100
Rao C. V. Nitric oxide signaling in colon cancer chemoprevention . Fundam. Mol. Mech. Mutagen. , 2004 , 555 ( 1-2 ), 107 - 119 . doi: 10.1016/j.mrfmmm.2004.05.022 http://dx.doi.org/10.1016/j.mrfmmm.2004.05.022
Wang Z. Q. ; Haque M. M. ; Binder K. ; Sharma M. ; Wei C. C. ; Stuehr D. J. Engineering nitric oxide synthase chimeras to function as NO dioxygenases . J. Inorg. Biochem. , 2016 , 158 , 122 - 130 . doi: 10.1016/j.jinorgbio.2016.03.002 http://dx.doi.org/10.1016/j.jinorgbio.2016.03.002
Wan M. M. ; Chen H. ; Wang Q. ; Niu Q. ; Xu P. ; Yu Y. Q. ; Zhu T. Y. ; Mao C. ; Shen J. Bio-inspired nitric-oxide-driven nanomotor . Nat. Commun. , 2019 , 10 ( 1 ), 966 . doi: 10.1038/s41467-019-08670-8 http://dx.doi.org/10.1038/s41467-019-08670-8
Andrabi S. M. ; Sharma N. S. ; Karan A. ; Shatil Shahriar S. M. ; Cordon B. ; Ma B. ; Xie J. W. Nitric oxide: physiological functions, delivery, and biomedical applications . Adv. Sci. , 2023 , 10 ( 30 ), 2303259 . doi: 10.1002/advs.202303259 http://dx.doi.org/10.1002/advs.202303259
Li T. ; Liu Z. Y. ; Hu J. L. ; Chen L. ; Chen T. T. ; Tang Q. Q. ; Yu B. X. ; Zhao B. ; Mao C. ; Wan M. M. A universal chemotactic targeted delivery strategy for inflammatory diseases . Adv. Mater. , 2023 , 35 ( 31 ), 2305226 . doi: 10.1002/adma.202305226 http://dx.doi.org/10.1002/adma.202305226
Wan M. M. ; Chen H. ; Wang Z. D. ; Liu Z. Y. ; Yu Y. Q. ; Li L. ; Miao Z. Y. ; Wang X. W. ; Wang Q. ; Mao C. ; Shen J. ; Wei J. Nitric oxide-driven nanomotor for deep tissue penetration and multidrug resistance reversal in cancer therapy . Adv. Sci. , 2021 , 8 ( 3 ), 2002525 . doi: 10.1002/advs.202002525 http://dx.doi.org/10.1002/advs.202002525
Chen L. ; Fang D. ; Zhang J. Y. ; Xiao X. Y. ; Li N. ; Li Y. ; Wan M. M. ; Mao C. Nanomotors-loaded microneedle patches for the treatment of bacterial biofilm-related infections of wound . J. Colloid Interface Sci. , 2023 , 647 , 142 - 151 . doi: 10.1016/j.jcis.2023.05.080 http://dx.doi.org/10.1016/j.jcis.2023.05.080
Tao Y. F. ; Li X. Y. ; Wu Z. Y. ; Chen C. L. ; Tan K. Y. ; Wan M. M. ; Zhou M. ; Mao C. Nitric oxide-driven nanomotors with bowl-shaped mesoporous silica for targeted thrombolysis . J. Colloid Interface Sci. , 2022 , 611 , 61 - 70 . doi: 10.1016/j.jcis.2021.12.065 http://dx.doi.org/10.1016/j.jcis.2021.12.065
Ascenção K. ; Szabo C. Emerging roles of cystathionine β -synthase in various forms of cancer . Redox Biol. , 2022 , 53 , 102331 . doi: 10.1016/j.redox.2022.102331 http://dx.doi.org/10.1016/j.redox.2022.102331
Bonifácio V D B. ; Pereira S A. ; Serpa J. ; Vicente J B . Cysteine metabolic circuitries: druggable targets in cancer . Br J Cancer. , 2021 , 124 ( 5 ), 862 - 879 . doi: 10.1038/s41416-020-01156-1 http://dx.doi.org/10.1038/s41416-020-01156-1
Wan M. M. ; Liu Z. Y. ; Li T. ; Chen H. ; Wang Q. ; Chen T. T. ; Tao Y. F. ; Mao C. Zwitterion-based hydrogen sulfide nanomotors induce multiple acidosis in tumor cells by destroying tumor metabolic symbiosis . Angew. Chem. Int. Ed. , 2021 , 60 ( 29 ), 16139 - 16148 . doi: 10.1002/anie.202104304 http://dx.doi.org/10.1002/anie.202104304
Pandey T. ; Pandey V. Hydrogen sulfide (H 2 S) metabolism: unraveling cellular regulation, disease implications, and therapeutic prospects for precision medicine . Nitric Oxide , 2024 , 144 , 20 - 28 . doi: 10.1016/j.niox.2024.01.004 http://dx.doi.org/10.1016/j.niox.2024.01.004
Furuya S. ; Tabata T. ; Mitoma J. ; Yamada K. ; Yamasaki M. ; Makino A. ; Yamamoto T. ; Watanabe M. ; Kano M. ; Hirabayashi Y. L-serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons . Proc. Natl. Acad. Sci. USA , 2000 , 97 ( 21 ), 11528 - 11533 . doi: 10.1073/pnas.200364497 http://dx.doi.org/10.1073/pnas.200364497
Chen H. ; Li T. ; Liu Z. Y. ; Tang S. W. ; Tong J. T. ; Tao Y. F. ; Zhao Z. N. ; Li N. ; Mao C. ; Shen J. ; Wan M. M. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma . Nat. Commun. , 2023 , 14 ( 1 ), 941 . doi: 10.1038/s41467-022-35709-0 http://dx.doi.org/10.1038/s41467-022-35709-0
Lambova S. N. ; Müller-Ladner U. Capillaroscopic pattern in inflammatory arthritis . Microvasc. Res. , 2012 , 83 ( 3 ), 318 - 322 . doi: 10.1016/j.mvr.2012.03.002 http://dx.doi.org/10.1016/j.mvr.2012.03.002
Zhao Z. N. ; Chen L. ; Yang C. H. ; Guo W. Y. ; Huang Y. L. ; Wang W. J. ; Wan M. M. ; Mao C. ; Shen J. Nanomotor-based H 2 S d onor with mitochondrial targeting function for treatment of Parkinson's disease . Bioact. Mater. , 2024 , 31 , 578 - 589 . doi: 10.1016/j.bioactmat.2023.09.001 http://dx.doi.org/10.1016/j.bioactmat.2023.09.001
Wang W. J. ; Zhao Z. N. ; Zhang Z. Q. ; Wu Z. L. ; Zhang Y. ; Wang K. H. ; Dai M. ; Mao C. ; Wan M. M. Delivery of small interfering RNA by hydrogen sulfide-releasing nanomotor for the treatment of Parkinson's disease . J. Control. Release , 2025 , 377 , 648 - 660 . doi: 10.1016/j.jconrel.2024.11.069 http://dx.doi.org/10.1016/j.jconrel.2024.11.069
Bhutani P. ; Joshi G. ; Raja N. ; Bachhav N. ; Rajanna P. K. ; Bhutani H. ; Paul A. T. ; Kumar R. U.S. FDA approved drugs from 2015-June 2020: a perspective . J. Med. Chem. , 2021 , 64 ( 5 ), 2339 - 2381 . doi: 10.1021/acs.jmedchem.0c01786 http://dx.doi.org/10.1021/acs.jmedchem.0c01786
Yu Z. ; Li H. ; Jia Y. Y. ; Qiao Y. B. ; Wang C. L. ; Zhou Q. ; He X. ; Yu S. B. ; Yang T. H. ; Wu H. Ratiometric co -delivery of doxorubicin and docetaxel by covalently conjugating with mPEG-poly( β -malic acid) for enhanced synergistic breast tumor therapy . Polym. Chem. , 2020 , 11 ( 46 ), 7330 - 7339 . doi: 10.1039/d0py01130d http://dx.doi.org/10.1039/d0py01130d
Chen H. ; Shi T. ; Wang Y. ; Liu Z. Y. ; Liu F. C. ; Zhang H. Y. ; Wang X. W. ; Miao Z. Y. ; Liu B. R. ; Wan M. M. ; Mao C. ; Wei J. Deep penetration of nanolevel drugs and micrometer-level T cells promoted by nanomotors for cancer immunochemotherapy . J. Am. Chem. Soc. , 2021 , 143 ( 31 ), 12025 - 12037 . doi: 10.1021/jacs.1c03071 http://dx.doi.org/10.1021/jacs.1c03071
Wu Z. Y. ; Zhou M. ; Tang X. T. ; Zeng J. Q. ; Li Y. Z. ; Sun Y. N. ; Huang J. ; Chen L. ; Wan M. M. ; Mao C. Carrier-free trehalose-based nanomotors targeting macrophages in inflammatory plaque for treatment of atherosclerosis . ACS Nano , 2022 , 16 ( 3 ), 3808 - 3820 . doi: 10.1021/acsnano.1c08391 http://dx.doi.org/10.1021/acsnano.1c08391
Stachowicz A. ; Wiśniewska A. ; Kuś K. ; Kiepura A. ; Gębska A. ; Gajda M. ; Białas M. ; Totoń-Żurańska J. ; Stachyra K. ; Suski M. ; Jawień J. ; Korbut R. ; Olszanecki R. The influence of trehalose on atherosclerosis and hepatic steatosis in apolipoprotein E knockout mice . Int. J. Mol. Sci. , 2019 , 20 ( 7 ), 1552 . doi: 10.3390/ijms20071552 http://dx.doi.org/10.3390/ijms20071552
Yang Y. X. ; Zhou R. Y. ; Wang Y. F. ; Zhang Y. Q. ; Yu J. C. ; Gu Z. Recent advances in oral and transdermal protein delivery systems . Angew. Chem. Int. Ed. , 2023 , 62 ( 10 ), e 202214795 . doi: 10.1002/anie.202214795 http://dx.doi.org/10.1002/anie.202214795
Krejsa C. ; Rogge M. ; Sadee W. Protein therapeutics: new applications for pharmacogenetics . Nat. Rev. Drug Discov. , 2006 , 5 ( 6 ), 507 - 521 . doi: 10.1038/nrd2039 http://dx.doi.org/10.1038/nrd2039
Sun X. Y. ; Setrerrahmane S. ; Li C. C. ; Hu J. L. ; Xu H. M. Nucleic acid drugs: recent progress and future perspectives . Signal Transduct. Target. Ther. , 2024 , 9 ( 1 ), 316 . doi: 10.1038/s41392-024-02035-4 http://dx.doi.org/10.1038/s41392-024-02035-4
Bao T. Y. ; Li N. ; Chen H. ; Zhao Z. N. ; Fan J. ; Tao Y. F. ; Chen C. L. ; Wan M. M. ; Yin G. Y. ; Mao C. Drug-loaded zwitterion-based nanomotors for the treatment of spinal cord injury . ACS Appl. Mater. Interfaces , 2023 , 15 ( 27 ), 32762 - 32771 . doi: 10.1021/acsami.3c05866 http://dx.doi.org/10.1021/acsami.3c05866
Li N. ; Huang C. X. ; Zhang J. ; Zhang J. Y. ; Huang J. ; Li S. S. ; Xia X. ; Wu Z. Y. ; Chen C. L. ; Tang S. W. ; Xiao X. Y. ; Gong H. ; Dai Y. X. ; Mao C. ; Wan M. M. Chemotactic NO/H 2 S nanomotors realizing cardiac targeting of G-CSF against myocardial ischemia-reperfusion injury . ACS Nano , 2023 , 17 ( 13 ), 12573 - 12593 . doi: 10.1021/acsnano.3c02781 http://dx.doi.org/10.1021/acsnano.3c02781
Zhang H. ; Xia J. Y. ; Wang X. Q. ; Wang Y. F. ; Chen J. ; He L. ; Dai J. Y. Recent progress of exosomes in hematological malignancies: pathogenesis, diagnosis, and therapeutic strategies . Int. J. Nanomedicine , 2024 , 19 , 11611 - 11631 . doi: 10.2147/ijn.s479697 http://dx.doi.org/10.2147/ijn.s479697
Manickam D. S. Delivery of mitochondria via extracellular vesicles–a new horizon in drug delivery . J. Control. Release , 2022 , 343 , 400 - 407 . doi: 10.1016/j.jconrel.2022.01.045 http://dx.doi.org/10.1016/j.jconrel.2022.01.045
Wang Q. ; Li T. ; Yang J. Y. ; Zhao Z. N. ; Tan K. Y. ; Tang S. W. ; Wan M. M. ; Mao C. Engineered exosomes with independent module/cascading function for therapy of Parkinson's disease by multistep targeting and multistage intervention method . Adv. Mater. , 2022 , 34 ( 27 ), 2201406 . doi: 10.1002/adma.202201406 http://dx.doi.org/10.1002/adma.202201406
Sarraf S. A. ; Sideris D. P. ; Giagtzoglou N. ; Ni L. N. ; Kankel M. W. ; Sen A. ; Bochicchio L. E. ; Huang C. H. ; Nussenzweig S. C. ; Worley S. H. ; Morton P. D. ; Artavanis-Tsakonas S. ; Youle R. J. ; Pickrell A. M. PINK1/parkin influences cell cycle by sequestering TBK1 at damaged mitochondria, inhibiting mitosis . Cell Rep. , 2019 , 29 ( 1 ), 225 - 235 .e 5 . doi: 10.1016/j.celrep.2019.08.085 http://dx.doi.org/10.1016/j.celrep.2019.08.085
Franco-Iborra S. ; Vila M. ; Perier C. Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson's disease and Huntington's disease . Front. Neurosci. , 2018 , 12 , 342 . doi: 10.3389/fnins.2018.00342 http://dx.doi.org/10.3389/fnins.2018.00342
Xin Y. G. ; Zhang X. D. ; Li J. Y. ; Gao H. ; Li J. Y. ; Li J. L. ; Hu W. Y. ; Li H. W. New insights into the role of mitochondria quality control in ischemic heart disease . Front. Cardiovasc. Med. , 2021 , 8 , 774619 . doi: 10.3389/fcvm.2021.774619 http://dx.doi.org/10.3389/fcvm.2021.774619
Wu Z. Y. ; Chen L. ; Guo W. Y. ; Wang J. ; Ni H. Y. ; Liu J. N. ; Jiang W. T. ; Shen J. ; Mao C. ; Zhou M. ; Wan M. M. Oral mitochondrial transplantation using nanomotors to treat ischaemic heart disease . Nat. Nanotechnol. , 2024 , 19 ( 9 ), 1375 - 1385 . doi: 10.1038/s41565-024-01681-7 http://dx.doi.org/10.1038/s41565-024-01681-7
Keller S. B. ; Averkiou M. A. The role of ultrasound in modulating interstitial fluid pressure in solid tumors for improved drug delivery . Bioconjug. Chem. , 2022 , 33 ( 6 ), 1049 - 1056 . doi: 10.1021/acs.bioconjchem.1c00422 http://dx.doi.org/10.1021/acs.bioconjchem.1c00422
Vaduganathan M. ; Mensah G. A. ; Turco J. V. ; Fuster V. ; Roth G. A. The global burden of cardiovascular diseases and risk: a compass for future health . J. Am. Coll. Cardiol. , 2022 , 80 ( 25 ), 2361 - 2371 . doi: 10.1016/j.jacc.2022.11.005 http://dx.doi.org/10.1016/j.jacc.2022.11.005
Tang X. T. ; Chen L. ; Wu Z. Y. ; Li Y. Z. ; Zeng J. Q. ; Jiang W. T. ; Lv W. Z. ; Wan M. M. ; Mao C. ; Zhou M. Lipophilic NO-driven nanomotors as drug balloon coating for the treatment of atherosclerosis . Small , 2023 , 19 ( 13 ), 2203238 . doi: 10.1002/smll.202203238 http://dx.doi.org/10.1002/smll.202203238
Lee K. J. ; Lee S. G. ; Jang I. ; Park S. H. ; Yang D. ; Seo I. H. ; Bong S. K. ; An D. H. ; Lee M. K. ; Jung I. K. ; Jang Y. H. ; Kim J. S. ; Ryu W. Linear micro-patterned drug eluting balloon (LMDEB) for enhanced endovascular drug delivery . Sci. Rep. , 2018 , 8 ( 1 ), 3666 . doi: 10.1038/s41598-018-21649-7 http://dx.doi.org/10.1038/s41598-018-21649-7
Brdiczka D. ; Wallimann T. The importance of the outer mitochondrial compartment in regulation of energy metabolism . Mol. Cell. Biochem. , 1994 , 133 - 134 , 69 - 83 .
Brown D. A. ; Perry J. B. ; Allen M. E. ; Sabbah H. N. ; Stauffer B. L. ; Shaikh S. R. ; Cleland J. G. F. ; Colucci W. S. ; Butler J. ; Voors A. A. ; Anker S. D. ; Pitt B. ; Pieske B. ; Filippatos G. ; Greene S. J. ; Gheorghiade M. Expert consensus document: mitochondrial function as a therapeutic target in heart failure . Nat. Rev. Cardiol. , 2017 , 14 ( 4 ), 238 - 250 . doi: 10.1038/nrcardio.2016.203 http://dx.doi.org/10.1038/nrcardio.2016.203
Godoy L. C. ; Farkouh M. E. ; Austin P. C. ; Shah B. R. ; Qiu F. ; Jackevicius C. A. ; Wijeysundera H. C. ; Krumholz H. M. ; Ko D. T. Association of beta-blocker therapy with cardiovascular outcomes in patients with stable ischemic heart disease . J. Am. Coll. Cardiol. , 2023 , 81 ( 24 ), 2299 - 2311 . doi: 10.1016/j.jacc.2023.04.021 http://dx.doi.org/10.1016/j.jacc.2023.04.021
Cohn P. F. ; Fox K. M. ; Of W. T. A. ; Daly C. Silent myocardial ischemia . Circulation , 2003 , 108 ( 10 ), 1263 - 1277 . doi: 10.1161/01.cir.0000088001.59265.ee http://dx.doi.org/10.1161/01.cir.0000088001.59265.ee
Cunnane S. C. ; Trushina E. ; Morland C. ; Prigione A. ; Casadesus G. ; Andrews Z. B. ; Flint Beal M. ; Bergersen L. H. ; Brinton R. D. ; de la Monte S. ; Eckert A. ; Harvey J. ; Jeggo R. ; Jhamandas J. H. ; Kann O. ; la Cour C. M. ; Martin W. F. ; Mithieux G. ; Moreira P. I. ; Murphy M. P. ; Nave K. A. ; Nuriel T. ; Oliet S. H. R. ; Saudou F. ; Mattson M. P. ; Swerdlow R. H. ; Millan M. J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing . Nat. Rev. Drug Discov. , 2020 , 19 ( 9 ), 609 - 633 . doi: 10.1038/s41573-020-0072-x http://dx.doi.org/10.1038/s41573-020-0072-x
Chung K. K. K. ; Thomas B. ; Li X. J. ; Pletnikova O. ; Troncoso J. C. ; Marsh L. ; Dawson V. L. ; Dawson T. M. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function . Science , 2004 , 304 ( 5675 ), 1328 - 1331 . doi: 10.1126/science.1093891 http://dx.doi.org/10.1126/science.1093891
Krzystek T. J. ; Banerjee R. ; Thurston L. ; Huang J. Q. ; Swinter K. ; Rahman S. N. ; Falzone T. L. ; Gunawardena S. Differential mitochondrial roles for α-synuclein in DRP 1 -dependent fission and PINK 1 /Parkin-mediated oxidation . Cell Death Dis., 2021, 12 ( 9 ), 796 . doi: 10.1038/s41419-021-04046-3 http://dx.doi.org/10.1038/s41419-021-04046-3
Vandiver M. S. ; Paul B. D. ; Xu R. S. ; Karuppagounder S. ; Rao F. ; Snowman A. M. ; Ko H. S. ; Lee Y. I. ; Dawson V. L. ; Dawson T. M. ; Sen N. ; Snyder S. H. Sulfhydration mediates neuroprotective actions of parkin . Nat. Commun. , 2013 , 4 , 1626 . doi: 10.1038/ncomms2623 http://dx.doi.org/10.1038/ncomms2623
0
浏览量
45
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构