浏览全部资源
扫码关注微信
武汉大学高等研究院 武汉 430072
E-mail: 2021106490043@whu.edu.cn
sun.rui@whu.edu.cn
min.jie@whu.edu.cn
收稿日期:2025-01-02,
录用日期:2025-02-12,
网络出版日期:2025-03-26,
移动端阅览
陈至一, 邢陆, 邓明玮, 石浩永, 吴小黑, 邵一鸣, 孙瑞, 闵杰. 基于4-氰基噻唑单元的聚合物给体材料设计合成及其光伏性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25002
Chen, Z. Y.; Xing, L.; Deng, M. W.; Shi, H. Y.; Wu, X. H.; Shao, Y. M.; Sun, R.; Min, J. Design, synthesis, and photovoltaic performance of polymer donor materials incorporating 4-cyanothiazole units. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25002
陈至一, 邢陆, 邓明玮, 石浩永, 吴小黑, 邵一鸣, 孙瑞, 闵杰. 基于4-氰基噻唑单元的聚合物给体材料设计合成及其光伏性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25002 DOI: CSTR: 32057.14.GFZXB.2025.7360.
Chen, Z. Y.; Xing, L.; Deng, M. W.; Shi, H. Y.; Wu, X. H.; Shao, Y. M.; Sun, R.; Min, J. Design, synthesis, and photovoltaic performance of polymer donor materials incorporating 4-cyanothiazole units. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25002 DOI: CSTR: 32057.14.GFZXB.2025.7360.
从结构简单、可商业购买的原料2-溴-4-氰基噻唑出发,本文作者设计合成了以4-氰基噻唑作为受体单元的聚合物给体材料PBTTzCN和PBTTzCN2Cl. 由于氰基和噻唑单元的协同吸电子性质,所开发聚合物给体PBTTzCN和PBTTzCN2Cl都展现出低最高占有轨道(HOMO),宽能隙. PBTTzCN与非富勒烯小分子受体材料L8-BO共混制备的活性层薄膜具有良好的相分离形貌,可实现优异的电荷传输性能,相应器件的能量转化效率(power conversion efficiency,PCE)达到了14.22%. 然而,基于PBTTzCN2Cl:L8-BO的活性层体系展现出2.02%的PCE,这可能是由于PBTTzCN2Cl的HOMO能级远低于L8-BO的HOMO能级,导致了该体系具有极差的激子分离性能和较低的电子传输性能.
Based on the simple and commercially available starting material 2-bromo-4-cyanothiazole
we have for the first time successfully designed and synthesized two novel polymer donor materials
PBTTzCN and PBTTzCN2Cl
incorporating 4-cyanothiazole as the electron-withdrawing acceptor unit. The rational molecular design of these polymer donors takes advantage of the strong electron-withdrawing nature of both the cyano (CN) and thiazole units
which act synergistically to effectively lower the highest occupied molecular orbital (HOMO) energy levels while simultaneously broadening the optical band gaps of the resulting polymers. These characteristics are crucial for optimizing the energy level alignment and absorption properties in organic photovoltaic (OPV) applications. To systematically evaluate the photovoltaic performance of these newly developed materials
we fabricated bulk heterojunction (BHJ) solar cells using PBTTzCN and PBTTzCN2Cl as polymer donors in combination with the well-established non-fullerene small-molecule acceptor L8-BO. The active layer film based on the PBTTzCN:L8-BO blend demonstrated a favorable nanoscale phase separation morphology
which promotes efficient charge carrier transport and exciton dissociation
resulting in an outstanding power conversion efficiency (PCE) of 14.22%. In stark contrast
the PBTTzCN2Cl:L8-BO-based active layer exhibited a significantly lower PCE of only 2.02%. This drastic reduction in efficiency is primarily attributed to the much deeper HOMO energy level of PBTTzCN2Cl compared to that of L8-BO
which disrupts the energetic driving force necessary for exciton dissociation and leads to inefficient charge generation and inferior electron transport properties. Consequently
the poor photovoltaic performance of PBTTzCN2Cl:L8-BO highlights the critical impact of molecular energy level alignment on the overall efficiency of organic solar cells.
McCulloch I. ; Chabinyc M. ; Brabec C. ; Nielsen C. B. ; Watkins S. E. Sustainability considerations for organic electronic products . Nat. Mater. , 2023 , 22 ( 11 ), 1304 - 1310 . doi: 10.1038/s41563-023-01579-0 http://dx.doi.org/10.1038/s41563-023-01579-0
Jiang Y. Y. ; Sun S. M. ; Xu R. J. ; Liu F. ; Miao X. D. ; Ran G. L. ; Liu K. R. ; Yi Y. P. ; Zhang W. K. ; Zhu X. Z. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells . Nat. Energy , 2024 , 9 ( 8 ), 975 - 986 . doi: 10.1038/s41560-024-01557-z http://dx.doi.org/10.1038/s41560-024-01557-z
Yang X. R. ; Sun R. ; Wang Y. H. ; Chen M. X. ; Xia X. X. ; Lu X. H. ; Lu G. H. ; Min J. Ternary all‐polymer solar cells with efficiency up to 18.14% employing a two‐step sequential deposition . Adv. Mater. , 2022 , 35 ( 7 ), 2209350 . doi: 10.1002/adma.202209350 http://dx.doi.org/10.1002/adma.202209350
Yuan J. ; Zhang Y. Q. ; Zhou L. Y. ; Zhang G. C. ; Yip H. L. ; Lau T. K. ; Lu X. H. ; Zhu C. ; Peng H. J. ; Johnson P. A. ; Leclerc M. ; Cao Y. ; Ulanski J. ; Li Y. F. ; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 , 3 ( 4 ), 1140 - 1151 . doi: 10.1016/j.joule.2019.01.004 http://dx.doi.org/10.1016/j.joule.2019.01.004
Cui Y. ; Yao H. F. ; Zhang J. Q. ; Xian K. H. ; Zhang T. ; Hong L. ; Wang Y. M. ; Xu Y. ; Ma K. Q. ; An C. B. ; He C. ; Wei Z. X. ; Gao F. ; Hou J. H. Single-junction organic photovoltaic cells with approaching 18% efficiency . Adv. Mater. , 2020 , 32 ( 19 ), e 1908205 . doi: 10.1002/adma.201908205 http://dx.doi.org/10.1002/adma.201908205
Li C. ; Zhou J. D. ; Song J. L. ; Xu J. Q. ; Zhang H. T. ; Zhang X. N. ; Guo J. ; Zhu L. ; Wei D. H. ; Han G. C. ; Min J. ; Zhang Y. ; Xie Z. Q. ; Yi Y. P. ; Yan H. ; Gao F. ; Liu F. ; Sun Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells . Nat. Energy , 2021 , 6 ( 6 ), 605 - 613 . doi: 10.1038/s41560-021-00820-x http://dx.doi.org/10.1038/s41560-021-00820-x
Liu Q. S. ; Jiang Y. F. ; Jin K. ; Qin J. Q. ; Xu J. G. ; Li W. T. ; Xiong J. ; Liu J. F. ; Xiao Z. ; Sun K. ; Yang S. F. ; Zhang X. T. ; Ding L. M. 18 % Efficiency organic solar cells . Sci. Bull. , 2020, 65 ( 4 ), 272 - 275 . doi: 10.1016/j.scib.2020.01.001 http://dx.doi.org/10.1016/j.scib.2020.01.001
Zhang M. J. ; Guo X. ; Ma W. ; Ade H. ; Hou J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance . Adv. Mater. , 2015 , 27 ( 31 ), 4655 - 4660 . doi: 10.1002/adma.201502110 http://dx.doi.org/10.1002/adma.201502110
Zhang L. ; Zhang Z. L. ; Liang H. Y. ; Guo X. ; Zhang M. J. A non-halogenated polymer donor based on imide unit for organic solar cells with efficiency nearly 16 %. Chin. J. Chem. , 2023 , 41 ( 17 ), 2095 - 2102 . doi: 10.1002/cjoc.202300007 http://dx.doi.org/10.1002/cjoc.202300007
Zhang T. ; An C. B. ; Cui Y. ; Zhang J. Q. ; Bi P. Q. ; Yang C. Y. ; Zhang S. Q. ; Hou J. H. A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells . Adv. Mater. , 2022 , 34 ( 2 ), e 2105803 . doi: 10.1002/adma.202105803 http://dx.doi.org/10.1002/adma.202105803
Shao Y. M. ; Gao Y. ; Sun R. ; Yang X. R. ; Zhang M. M. ; Liu S. S. ; Min J. A high-performance organic photovoltaic system with versatile solution processability . Adv. Mater. , 2024 , 36 ( 35 ), e 2406329 . doi: 10.1002/adma.202406329 http://dx.doi.org/10.1002/adma.202406329
Qian D. P. ; Ye L. ; Zhang M. J. ; Liang Y. R. ; Li L. J. ; Huang Y. ; Guo X. ; Zhang S. Q. ; Tan Z. A. ; Hou J. H. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state . Macromolecules , 2012 , 45 ( 24 ), 9611 - 9617 . doi: 10.1021/ma301900h http://dx.doi.org/10.1021/ma301900h
Liu Y. H. ; Zhao J. B. ; Li Z. K. ; Mu C. ; Ma W. ; Hu H. W. ; Jiang K. ; Lin H. R. ; Ade H. ; Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells . Nat. Commun. , 2014 , 5 ( 1 ), 5293 . doi: 10.1038/ncomms6293 http://dx.doi.org/10.1038/ncomms6293
Sun R. ; Wu Y. ; Yang X. R. ; Gao Y. ; Chen Z. ; Li K. ; Qiao J. W. ; Wang T. ; Guo J. ; Liu C. ; Hao X. T. ; Zhu H. M. ; Min J. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor . Adv. Mater. , 2022 , 34 ( 26 ), 2110147 . doi: 10.1002/adma.202110147 http://dx.doi.org/10.1002/adma.202110147
Sun R. ; Wu Y. ; Guo J. ; Luo Z. H. ; Yang C. L. ; Min J. High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno [ 2 , 3 -f] benzofuran unit . Sci. China Chem., 2020, 63 ( 9 ), 1246 - 1255 . doi: 10.1007/s11426-020-9753-x http://dx.doi.org/10.1007/s11426-020-9753-x
Shao Y. M. ; Sun R. ; Wang W. ; Yang X. R. ; Sun C. K. ; Li Y. F. ; Min J. Low-cost organic photovoltaic materials with great application potentials enabled by developing isomerized non-fused ring acceptors . Sci. China Chem. , 2023 , 66 ( 4 ), 1101 - 1110 . doi: 10.1007/s11426-022-1502-3 http://dx.doi.org/10.1007/s11426-022-1502-3
Wu Y. ; Zheng Y. ; Yang H. ; Sun C. K. ; Dong Y. Y. ; Cui C. H. ; Yan H. ; Li Y. F. Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53% . Sci. China Chem. , 2020 , 63 ( 2 ), 265 - 271 . doi: 10.1007/s11426-019-9599-1 http://dx.doi.org/10.1007/s11426-019-9599-1
Zhan L. L. ; Li S. X. ; Li Y. K. ; Sun R. ; Min J. ; Bi Z. Z. ; Ma W. ; Chen Z. ; Zhou G. Q. ; Zhu H. M. ; Shi M. M. ; Zuo L. J. ; Chen H. Z. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics . Joule , 2022 , 6 ( 3 ), 662 - 675 . doi: 10.1016/j.joule.2022.02.001 http://dx.doi.org/10.1016/j.joule.2022.02.001
Sun R. ; Wang T. ; Fan Q. P. ; Wu M. J. ; Yang X. R. ; Wu X. H. ; Yu Y. ; Xia X. X. ; Cui F. Z. ; Wan J. ; Lu X. H. ; Hao X. T. ; Jen A. K. Y. ; Spiecker E. ; Min J. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor . Joule , 2023 , 7 ( 1 ), 221 - 237 . doi: 10.1016/j.joule.2022.12.007 http://dx.doi.org/10.1016/j.joule.2022.12.007
Wang C. X. ; Ma X. M. ; Deng D. ; Zhang H. ; Sun R. ; Zhang J. Q. ; Zhang L. L. ; Wu M. Y. ; Min J. ; Zhang Z. G. ; Wei Z. X. Giant dimeric donors for all-giant-oligomer organic solar cells with efficiency over 16% and superior photostability . Nat. Commun. , 2024 , 15 ( 1 ), 8494 . doi: 10.1038/s41467-024-52821-5 http://dx.doi.org/10.1038/s41467-024-52821-5
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构