浏览全部资源
扫码关注微信
1.东华大学先进纤维材料全国重点实验室 材料科学与工程学院 上海 201620
2.苏州大学材料与化工学部 江苏省新型功能高分子材料工程实验室 苏州 215123
E-mail: zhouyj@dhu.edu.cn
fyan@suda.edu.cn
收稿日期:2025-01-02,
录用日期:2025-02-12,
网络出版日期:2025-04-17,
移动端阅览
王志涵, 周莹杰, 严锋. 离子液体修饰纤维素及其催化CO2环加成反应的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25004
Wang, Z. H.; Zhou, Y. J.; Yan, F. Ionic liquid modified cellulose as catalyst for CO2 cycloaddition. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25004
王志涵, 周莹杰, 严锋. 离子液体修饰纤维素及其催化CO2环加成反应的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25004 DOI: CSTR: 32057.14.GFZXB.2025.7371.
Wang, Z. H.; Zhou, Y. J.; Yan, F. Ionic liquid modified cellulose as catalyst for CO2 cycloaddition. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25004 DOI: CSTR: 32057.14.GFZXB.2025.7371.
二氧化碳(CO
2
)与环氧化物的环加成反应被认为是CO
2
资源化利用最具前景的方法之一. 然而,环加成反应的苛刻条件仍然是亟待解决的挑战. 通过乙烯基咪唑溴盐([VPIM
]
Br)改性烯丙基纤维素醚(AHP-cellulose),成功制备了离子液体担载于纤维素的多孔催化剂(PPCIL),并应用于CO
2
的环加成催化反应. 研究发现,在0.1 MPa的CO
2
压力下,PPCIL即可对多种环氧底物展示出较好的环加成催化活性. 其中,在80 ℃,0.1 MPa的温和条件下,由CO
2
和环氧氯丙烷反应得到的氯丙烯碳酸酯的产率和选择性均可达到99%. 通过多种表征技术揭示了PPCIL能够吸附CO
2
并活化环氧底物,有效地催化了环加成反应,并提出了可能的催化机理. 此外,PPCIL循环使用5次后,仍能保持高的催化活性,其产率为88.5%,选择性为98%.
Cycloaddition of carbon dioxide (CO
2
) and epoxides can boast 100% atomic economy
and it is considered an up-and-coming method for CO
2
utilization. However
the need for harsh reaction conditions presents a significant challenge. This study addresses this issue by successfully preparing the cellulose-supported ionic liquid as a porous catalyst (PPCIL)
via
the reaction of allyl cellulose ether (AHP-cellulose) and vinyl imidazolium bromide ([VPIM
]
Br). The catalytic activity of PPCIL was thoroughly investigated. It was found that end epoxides with small-sized substituents such as epichlorohydrin
epibromohydrin
and propylene oxide
can be completely converted to corresponding carbonates over PPCIL at 80 ℃ and 0.1 MPa. When the temperature rose to 100 ℃
PPCIL also revealed good catalytic activity towards end epoxides with larger size such as allyl glycidyl ether and styrene oxide. PPCIL can effectively activate the CO
2
and epoxy substrates
and potential reaction mechanisms were proposed. Notably
PPCIL demonstrated high catalytic activity even after being recycled for five times
maintaining a yield of 88.5% and a selectivity of 98%. In summary
this study offers an effective strategy for heterogenizing ionic liquids for catalytic activation CO
2
to cyclic carbonates under mild conditions.
Zhang Z. ; Zhao L. L. ; Xie Z. J. ; Zhou Z. Diversified development of CO 2 in energy storage . Green Chem. Eng. , 2020 , 1 ( 2 ), 79 - 81 . doi: 10.1016/j.gce.2020.10.003 http://dx.doi.org/10.1016/j.gce.2020.10.003
He H. Z. ; Kramer R. J. ; Soden B. J. ; Jeevanjee N. State dependence of CO 2 forcing and its implications for climate sensitivity . Science , 2023 , 382 ( 6674 ), 1051 - 1056 . doi: 10.1126/science.abq6872 http://dx.doi.org/10.1126/science.abq6872
马钰琨 , 刘绍峰 , 李志波 . 有机催化CO 2 /环氧/酸酐交替共聚合成聚碳酸酯/聚酯及其共聚物 . 高分子学报 , 2022 , 53 ( 9 ), 1041 - 1056 . doi: 10.11777/j.issn1000-3304.2022.22112 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22112
Zhao Q. M. ; Yao X. Q. ; Su Q. ; Deng L. L. ; Chen J. ; Li Y. N. ; Dong L. ; Yang Z. F. ; Cheng P. W. High density poly(ionic liquid)s with spatial structure regulation for efficient carbon dioxide cycloaddition . ChemCatChem , 2023 , 15 ( 16 ), e 202300754 . doi: 10.1002/cctc.202300754 http://dx.doi.org/10.1002/cctc.202300754
Wang B. Y. ; Wang L. X. ; Lin J. ; Xia C. G. ; Sun W. Multifunctional Zn-N 4 catalysts for the coupling of CO 2 with epoxides into cyclic carbonates . ACS Catal., 2023, 13 ( 15 ), 10386 - 10393 . doi: 10.1021/acscatal.3c02449 http://dx.doi.org/10.1021/acscatal.3c02449
Belinchón A. ; Santiago R. ; Hernández E. ; Moya C. ; Navarro P. ; Palomar J. Reaction-extraction platforms towards CO 2 -derived cyclic carbonates catalyzed by ionic liquids . J. Clean. Prod. , 2022 , 368 , 133189 . doi: 10.1016/j.jclepro.2022.133189 http://dx.doi.org/10.1016/j.jclepro.2022.133189
Li L. ; Liu W. X. ; Shi T. ; Shang S. ; Zhang X. D. ; Wang H. ; Tian Z. Q. ; Chen L. ; Xie Y. Photoexcited single-electron transfer for efficient green synthesis of cyclic carbonate from CO 2 . ACS Mater. Lett. , 2023 , 5 ( 4 ), 1219 - 1226 . doi: 10.1021/acsmaterialslett.3c00069 http://dx.doi.org/10.1021/acsmaterialslett.3c00069
Zhang H. ; Liu H. B. ; Yue J. M. Organic carbonates from natural sources . Chem. Rev. , 2014 , 114 ( 1 ), 883 - 898 . doi: 10.1021/cr300430e http://dx.doi.org/10.1021/cr300430e
Deng L. L. ; Su Q. ; Tan X. ; Wang Y. C. ; Dong L. ; He H. Y. ; Li Z. X. ; Cheng W. G. Tunable imidazolium ionic liquids as efficient catalysts for conversion of urea into cyclic carbonates . Mol. Catal. , 2022 , 519 , 112153 . doi: 10.1016/j.mcat.2022.112153 http://dx.doi.org/10.1016/j.mcat.2022.112153
Toda Y. ; Hashimoto K. ; Mori Y. ; Suga H. A phosphonium ylide as a ligand for [3+2 ] coupling reactions of epoxides with heterocumulenes under mild conditions. J. Org. Chem. , 2020 , 85 ( 16 ), 10980 - 10987 . doi: 10.1021/acs.joc.0c01101 http://dx.doi.org/10.1021/acs.joc.0c01101
Sogukomerogullari H. G. ; Zirek A. G. ; Aytar E. ; Köse M. ; Sönmez M. Pd, Ni, Fe and Cu complexes containing a novel SNS-pincer ligand bearing pyridine: synthesis and catalytic application to form cyclic carbonates . J. Mol. Struct. , 2022 , 1263 , 133074 . doi: 10.1016/j.molstruc.2022.133074 http://dx.doi.org/10.1016/j.molstruc.2022.133074
Xu W. ; Chen M. ; Yang Y. Y. ; Chen K. C. ; Li Y. Y. ; Zhang Z. X. ; Luo P. R. Construction of aluminum-porphyrin-based hypercrosslinked ionic polymers (HIPs) by direct knitting approach for CO 2 capture and in situ conversion to cyclic carbonates . ChemCatChem , 2023 , 15 ( 4 ), e 202201441 . doi: 10.1002/cctc.202201441 http://dx.doi.org/10.1002/cctc.202201441
Wang T. T. ; Song X. D. ; Xu H. L. ; Chen M. M. ; Zhang J. ; Ji M. Recyclable and magnetically functionalized metal-organic framework catalyst: IL/Fe 3 O 4 @HKUST-1 for the cycloaddition reaction of CO2 with epoxides. ACS Appl. Mater. Interfaces , 2021 , 13 ( 19 ), 22836 - 22844 . doi: 10.1021/acsami.1c03345 http://dx.doi.org/10.1021/acsami.1c03345
刘程 , 李国宁 , 张曼霞 , 翁志焕 , 蹇锡高 . 基于卟啉基多孔有机聚合物的CO 2 吸附及催化性能 . 功能高分子学报 , 2020 , 33 ( 6 ), 532 - 539 . doi: 10.14133/j.cnki.1008-9357.20200116001 http://dx.doi.org/10.14133/j.cnki.1008-9357.20200116001
Liu P. ; Cai K. X. ; Tao D. J. ; Zhao T. X. The mega-merger strategy: M@COF core-shell hybrid materials for facilitating CO 2 capture and conversion to monocyclic and polycyclic carbonates . Appl. Catal. B Environ. , 2024 , 341 , 123317 . doi: 10.1016/j.apcatb.2023.123317 http://dx.doi.org/10.1016/j.apcatb.2023.123317
Song T. ; Chen W. Q. ; Zhang Y. C. ; Situ G. H. ; Liu F. ; Shen Y. ; Kong W. X. ; Zhong X. L. ; Huang Y. ; Li S. F. ; Yang L. ; Zhang S. H. ; Li S. J. ; Li W. Mass transfer and reaction mechanism of CO 2 capture into a novel amino acid ionic liquid phase-change absorbent . Sep. Purif. Technol. , 2024 , 330 , 125538 . doi: 10.1016/j.seppur.2023.125538 http://dx.doi.org/10.1016/j.seppur.2023.125538
Zhu G. P. ; Xiong J. X. ; Zhou Y. ; Zhou Q. S. ; Ren B. X. ; Wang S. X. ; Yang X. J. ; Jiang F. Z. Sustainable and effective gold(I) separation from aurocyanides wastewater and its mechanism using guanidinium ionic liquids . J. Clean. Prod. , 2023 , 428 , 139405 . doi: 10.1016/j.jclepro.2023.139405 http://dx.doi.org/10.1016/j.jclepro.2023.139405
Wang C. ; Xie Y. X. ; Li W. J. ; Ren Q. Y. ; Lv B. H. ; Jing G. H. ; Zhou Z. M. Performance and mechanism of the functional ionic liquid absorbent with the self-extraction property for CO 2 capture . Chem. Eng. J. , 2023 , 473 , 145266 . doi: 10.1016/j.cej.2023.145266 http://dx.doi.org/10.1016/j.cej.2023.145266
Zhang A. J. ; Chen C. J. ; Zuo C. S. ; Xu X. B. ; Cai T. ; Li X. T. ; Yuan Y. ; Yang H. H. ; Meng G. G. Imidazolium-based ionic liquids containing multipoint hydrogen bond donors as bifunctional organocatalysts for efficient cooperative conversion of CO 2 to cyclic carbonates . Green Chem. , 2022 , 24 ( 18 ), 7194 - 7207 . doi: 10.1039/d2gc02517e http://dx.doi.org/10.1039/d2gc02517e
Dai W. L. ; Jin B. ; Luo S. L. ; Luo X. B. ; Tu X. M. ; Chak-Tong A. Functionalized phosphonium-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonate from expoxides and carbon dioxide . Appl. Catal. A Gen. , 2014 , 470 , 183 - 188 . doi: 10.1016/j.apcata.2013.10.060 http://dx.doi.org/10.1016/j.apcata.2013.10.060
Fu Y. ; Xu Y. ; Zeng Z. ; Ibrahim A. R. ; Yang J. ; Yang S. ; Xie Y. ; Hong Y. ; Su Y. ; Wang H. Mesoporous poly(ionic liquid)s with dual active sites for highly efficient CO 2 conversion . Green Energy Environ. , 2023 , 8 ( 2 ), 478 - 486 . doi: 10.1016/j.gee.2021.05.013 http://dx.doi.org/10.1016/j.gee.2021.05.013
Ma X. ; Yu J. ; Hu Y. ; Texter J. ; Yan F. Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries . Industrial Chemistry & Materials , 2023 , 1 ( 1 ), 39 - 59 . doi: 10.1039/d2im00051b http://dx.doi.org/10.1039/d2im00051b
Mikšovsky P. ; Rauchenwald K. ; Naghdi S. ; Rabl H. ; Eder D. ; Konegger T. ; Bica-Schröder K. Silicon oxycarbide (SiOC)-supported ionic liquids: heterogeneous catalysts for cyclic carbonate formation . ACS Sustain. Chem. Eng. , 2024 , 12 ( 4 ), 1455 - 1467 . doi: 10.1021/acssuschemeng.3c05569 http://dx.doi.org/10.1021/acssuschemeng.3c05569
许神剑 ; 杨思卿 ; 缪涵 ; 杨溪 ; 林绍梁 . 偶氮苯接枝的聚离子液体的合成及其多功能光学应用 . 高分子学报 , 2024 , 55 ( 12 ), 1 - 10 .
Wu X. H. ; Wang M. P. ; Xie Y. Z. ; Chen C. ; Li K. ; Yuan M. M. ; Zhao X. G. ; Hou Z. S. Carboxymethyl cellulose support ed ionic liquid as a heterogeneous catalyst for the cycloaddition of CO 2 to cyclic carbonate . Appl. Catal. A Gen. , 2016 , 519 , 146 - 154 . doi: 10.1016/j.apcata.2016.04.002 http://dx.doi.org/10.1016/j.apcata.2016.04.002
Yang Y. L. ; Guo Y. L. ; Gao C. T. ; North M. ; Yuan J. L. ; Xie H. B. ; Zheng Q. Fabrication of carboxylic acid and imidazolium ionic liquid functionalized porous cellulosic materials for the efficient conversion of carbon dioxide into cyclic carbonates . ACS Sustain. Chem. Eng. , 2023 , 11 ( 6 ), 2634 - 2646 . doi: 10.1021/acssuschemeng.2c06976 http://dx.doi.org/10.1021/acssuschemeng.2c06976
Tong R. P. ; Chen G. X. ; Pan D. H. ; Qi H. S. ; Li R. A. ; Tian J. F. ; Lu F. C. ; He M. H. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors . Biomacromolecules , 2019 , 20 ( 5 ), 2096 - 2104 . doi: 10.1021/acs.biomac.9b00322 http://dx.doi.org/10.1021/acs.biomac.9b00322
任强 ; 武进 ; 张军 ; 何嘉松 ; 过梅丽 . 1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究 . 高分子学报 , 2003 , 53 ( 3 ), 448 - 451 .
王传宝 , 应三九 , 肖正刚 . 竹纤维改性聚丙烯超临界CO 2 发泡性能的研究 . 高分子学报 , 2011 , 42 ( 12 ), 1419 - 1424 .
Liu M. S. ; Ma C. ; Wang Q. ; Li R. Y. ; Yu S. Z. ; Chen H. ; Liu F. S. Capture and in situ conversion of low-concentration CO 2 over robust poly(ionic liquid)@porous carbon nanocomposites under green, co-catalyst- and solvent-free conditions. Chem. Eng. J. , 2024 , 500 , 157099 . doi: 10.1016/j.cej.2024.157099 http://dx.doi.org/10.1016/j.cej.2024.157099
Zhou Y. Y. ; Chang M. F. ; Zang X. Y. ; Zheng L. ; Wang Y. Q. ; Wu L. ; Han X. L. ; Chen Y. Q. ; Yu Y. S. ; Zhang Z. X. The polymeric ionic liquids/mesoporous alumina composites: synthesis, characterization and CO 2 capture performance test . Polym. Test. , 2020 , 81 , 106109 . doi: 10.1016/j.polymertesting.2019.106109 http://dx.doi.org/10.1016/j.polymertesting.2019.106109
Wang T. F. ; Zheng D. N. ; An B. B. ; Liu Y. ; Ren T. G. ; Hans Å. ; Wang L. ; Zhang J. L. ; Ahlquist M. S. G. Dual-ionic imidazolium salts to promote synthesis of cyclic carbonates at atmospheric pressure . Green Energy Environ. , 2022 , 7 ( 6 ), 1327 - 1339 . doi: 10.1016/j.gee.2021.02.011 http://dx.doi.org/10.1016/j.gee.2021.02.011
Liu Y. ; Li S. ; Chen Y. ; Hu T. ; Pudukudy M. ; Shi L. ; Shan S. ; Zhi Y. Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO 2 cycloaddition . J. Colloid Interface Sci. , 2023 , 652 , 737 - 748 . doi: 10.1016/j.jcis.2023.07.127 http://dx.doi.org/10.1016/j.jcis.2023.07.127
Wang Y. F. ; Liu H. M. ; Shi Q. J. ; Miao Z. R. ; Duan P. H. ; Wang P. Y. ; Rong P. H. ; Zhang P. J. Single-atom titanium on mesoporous nitrogen, oxygen-doped carbon for efficient photo-thermal catalytic CO 2 cycloaddition by a radical mechanism . Angew. Chem. Int. Ed. , 2024 , 136 ( 23 ), e 202404911 . doi: 10.1002/anie.202404911 http://dx.doi.org/10.1002/anie.202404911
Makarov A. Y. ; Volkova Y. M. ; Zikirin S. B. ; Irtegova I. G. ; Bagryanskaya I. Y. ; Gatilov Y. V. ; Nefedov A. A. ; Zibarev A. V. New 3 , 1 ,2, 4 -benzothiaselenadiazines, related π-heterocycles including Herz cations, radicals and molecular complexes, and saltsBunte. New J. Chem., 2022, 46 ( 8 ), 3687 - 3696 . doi: 10.1039/d1nj05979c http://dx.doi.org/10.1039/d1nj05979c
Lee J. W. ; Heo J. H. ; Lee B. ; Cho H. H. ; Kim T. ; Lee J. H. Enhancement in the adhesion properties of polycarbonate surfaces through chemical functionalization with organosilicon coupling agents . J. Mater. Sci. Mater. Electron. , 2019 , 30 ( 19 ), 17773 - 17779 . doi: 10.1007/s10854-019-02128-9 http://dx.doi.org/10.1007/s10854-019-02128-9
Manatunga D. C. ; Jayasinghe J. A. B. ; Sandaruwan C. ; De Silva R. M. ; Nalin De Silva K. M. Enhancement of release and solubility of curcumin from electrospun PEO-EC-PVP tripolymer-based nanofibers: a study on the effect of hydrogenated castor oil . ACS Omega , 2022 , 7 ( 42 ), 37264 - 37278 . doi: 10.1021/acsomega.2c03495 http://dx.doi.org/10.1021/acsomega.2c03495
0
浏览量
32
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构