浏览全部资源
扫码关注微信
1.四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
2.山东东岳未来氢能材料股份有限公司 淄博 255100
E-mail: qiangfu@scu.edu.cn
收稿日期:2025-01-07,
录用日期:2025-02-06,
网络出版日期:2025-03-31,
移动端阅览
王岩旭, 陈洋, 王丽, 王柯, 傅强. 膨体聚四氟乙烯薄膜制备过程中的拉伸形变机理及纵向拉伸比的选择. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25011
Wang, Y. X.; Chen, Y.; Wang, L.; Wang, K.; Fu, Q. Deformation mechanism and selection of longitudinal stretching ratio in the preparation process of expanded polytetrafluoroethylene film. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25011
王岩旭, 陈洋, 王丽, 王柯, 傅强. 膨体聚四氟乙烯薄膜制备过程中的拉伸形变机理及纵向拉伸比的选择. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25011 DOI: CSTR: 32057.14.GFZXB.2025.7355.
Wang, Y. X.; Chen, Y.; Wang, L.; Wang, K.; Fu, Q. Deformation mechanism and selection of longitudinal stretching ratio in the preparation process of expanded polytetrafluoroethylene film. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25011 DOI: CSTR: 32057.14.GFZXB.2025.7355.
有机多孔膜材料在诸多领域广泛应用,然而聚乙烯、聚丙烯等常用材料存在不耐高温、抗氧化及耐化学腐蚀性能差等缺陷. 聚四氟乙烯(PTFE)具备卓越的耐化学腐蚀性、高低温耐受性和良好力学性能,其高温拉伸成孔法制备微孔膜在工业上应用广泛,但高温拉伸过程中的结构演变与形态变化因缺乏追踪表征技术而难以探究. 本研究以膨体聚四氟乙烯(ePTFE)基材为研究对象,先横向拉伸再纵向拉伸制备ePTFE微孔膜. 横向拉伸过程中,通过扫描电子显微镜(SEM)、二维小角X射线散射(2D-SAXS)和差式扫描热分析(DSC)等测试手段发现,ePTFE微观结构和形态演变可以以应变200%为分界,分为两个阶段,各阶段纤维、微孔等结构变化规律明显,且与结晶度变化相关. 纵向拉伸研究表明,纵向拉伸比显著影响ePTFE薄膜的孔径、孔隙率、表面粗糙度及力学性能,其中6~8倍纵向拉伸比在实际应用中综合性能较优. 本研究成果为深入理解ePTFE拉伸形变机理提供了关键依据,对实际生产中纵向拉伸比的合理选择具有重要指导价值,有助于推动ePTFE微孔膜的工业生产优化.
Organic porous membrane materials are widely used in many fields
but commonly used materials such as polyethylene and polypropylene have defects such as poor high temperature resistance
oxidation resistance
and chemical corrosion resistance. Polytetrafluoroethylene (PTFE) has excellent chemical corrosion resistance
high and low temperature resistance
and good mechanical properties. Its high-temperature stretching method for preparing microporous membranes is widely used in industry. However
the structural evolution and morphological changes during high-temperature stretching are difficult to explore due to the lack of tracking and characterization techniques. This study takes expanded polytetrafluoroethylene (ePTFE) substrate as the research object
and prepares ePTFE microporous membrane by transverse stretching and then longitudinal stretching. During the transverse stretching process
it was found through testing methods such as scanning electron microscopy (SEM)
two-dimensional small angle X-ray scattering (2D-SAXS)
and differential scanning calorimetry (DSC) that the microstructure and morphological evolution of ePTFE can be divided into two stages with a strain of 200% as the boundary. The structural changes of fibers
micropores
and other structures in each stage are obvious and related to changes in crystallinity. Longitudinal stretching studies have shown that the longitudinal stretching ratio significantly affects the pore size
porosity
surface roughness
and mechanical properties of ePTFE films
with 6-8 times the longitudinal stretching ratio showing better overall performance in practical applications. This research provides a key basis for a deeper understanding of the tensile deformation mechanism of ePTFE
and has important guiding value for the reasonable selection of longitudinal stretching ratio in actual production
which helps to promote the industrial production optimization of ePTFE microporous membranes.
Song Y. H. ; Wu K. J. ; Zhang T. W. ; Lu L. L. ; Guan Y. ; Zhou F. ; Wang X. X. ; Yin Y. C. ; Tan Y. H. ; Li F. ; Tian T. ; Ni Y. ; Yao H. B. ; Yu S. H. A nacre-inspired separator coating for impact-tolerant lithium batteries . Adv. Mater. , 2019 , 31 ( 51 ), 1905711 . doi: 10.1002/adma.201905711 http://dx.doi.org/10.1002/adma.201905711
Su M. M. ; Huang G. ; Wang S. Q. ; Wang Y. J. ; Wang H. H. High safety separators for rechargeable lithium batteries . Sci. China Chem. , 2021 , 64 ( 7 ), 1131 - 1156 . doi: 10.1007/s11426-021-1011-9 http://dx.doi.org/10.1007/s11426-021-1011-9
Chen H. Z. ; Wang Z. C. ; Feng Y. T. ; Cai S. Y. ; Gao H. P. ; Wei Z. Z. ; Zhao Y. Cellulose-based separators for lithium batteries: source, preparation and performance . Chem. Eng. J. , 2023 , 471 , 144593 . doi: 10.1016/j.cej.2023.144593 http://dx.doi.org/10.1016/j.cej.2023.144593
Wang X. X. ; Xu H. F. ; Ning F. H. ; Duan S. ; Hu Y. ; Ding X. K. ; Xu F. J. Improved cell adhesion on self-assembled chiral nematic cellulose nanocrystal films . Macromol. Rapid Commun. , 2024 , 2400339 . doi: 10.1002/marc.202400339 http://dx.doi.org/10.1002/marc.202400339
Pigaleva M. A. ; Bulat M. V. ; Gromovykh T. I. ; Gavryushina I. A. ; Lutsenko S. V. ; Gallyamov M. O. ; Novikov I. V. ; Buyanovskaya A. G. ; Kiselyova O. I. A new approach to purification of bacterial cellulose membranes: what happens to bacteria in supercritical media? J. Supercrit. Fluids , 2019 , 147 , 59 - 69 . doi: 10.1016/j.supflu.2019.02.009 http://dx.doi.org/10.1016/j.supflu.2019.02.009
Strobel M. ; Strobel J. M. ; Jones V. ; Lechuga H. ; Lyons C. S. Effect on wettability of the topography and oxidation state of biaxially oriented poly(propylene) film . J. Adhes. Sci. Technol. , 2019 , 33 ( 15 ), 1644 - 1657 . doi: 10.1080/01694243.2019.1604304 http://dx.doi.org/10.1080/01694243.2019.1604304
Jiang W. J. ; Liang Y. K. ; Zhang Y. ; Xie Z. H. ; Zhou J. ; Kang J. ; Cao Y. ; Xiang M. Preparation of graphene oxide-silica nanohybrid/poly(lactic acid) biaxially oriented films with enhanced mechanical properties . Polymer , 2022 , 261 , 125410 . doi: 10.1016/j.polymer.2022.125410 http://dx.doi.org/10.1016/j.polymer.2022.125410
Li Z. Q. ; Ye L. ; Zhao X. W. ; Coates P. ; Caton-Rose F. ; Martyn M. Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching . J. Ind. Eng. Chem. , 2017 , 52 , 338 - 348 . doi: 10.1016/j.jiec.2017.04.008 http://dx.doi.org/10.1016/j.jiec.2017.04.008
Funk C. V. ; Billovits G. F. ; Koreltz M. S. ; Dooley J. ; Chiou N. R. Inducing surface porosity in aqueous-quenched, microporous Nylon 11 and Nylon 12 films . J. Appl. Polym. Sci. , 2017 , 134 ( 15 ), 44695 .doi, 10.1002/app.44695. doi: 10.1002/app.44695 http://dx.doi.org/10.1002/app.44695
Zhang T. D. ; Yu H. N. ; Jung Y. H. ; Zhang C. H. ; Feng Y. ; Chen Q. G. ; Lee K. J. ; Chi Q. G. Significantly improved high-temperature energy storage performance of BOPP films by coating nanoscale inorganic layer . Energy Environ. Mater. , 2024 , 7 ( 2 ), e 12549 . doi: 10.1002/eem2.12549 http://dx.doi.org/10.1002/eem2.12549
Lv L. ; Zhang C. S. ; Zhang C. ; Xu S. J. ; Xing Z. L. ; Shao T. Improving high-temperature capacitive energy storage of biaxially oriented polypropylene through titanium dioxide deposition layer by atmospheric pressure plasma jets . Plasma Process. Polym. , 2024 , 21 ( 11 ), e 2400122 . doi: 10.1002/ppap.202400122 http://dx.doi.org/10.1002/ppap.202400122
Seymour R. B. ; Kirshenbaum, G. S. In High performance polymers, their origin and development: proceedings of the Symposium on the History of High Performance Polymers at the American Chemical Society Meeting held in New York , 1986 . doi: 10.1007/978-94-011-7073-4 http://dx.doi.org/10.1007/978-94-011-7073-4
Ebnesajjad, S., 14 -Fluoropolymer Foams. In Fluoroplastics (Second Edition) , Ebnesajjad, S., Ed. William Andrew Publishing: Oxford, 2015; pp 412 - 431 . doi: 10.1016/b978-1-4557-3197-8.00014-6 http://dx.doi.org/10.1016/b978-1-4557-3197-8.00014-6
Olabisi , O. Handbook of Thermoplastics . 1997 . doi: 10.1016/S0376-8716(97)00067-7 http://dx.doi.org/10.1016/S0376-8716(97)00067-7
Kroschwitz R. E. K. D. F. O. J. I. ; Howe-Grant M. In Encyclopedia of chemical technology , 1998 .
Lo L. Y. ; Thomas D. J. , Microporous asymmetric polyfluorocarbon membranes . US Patent 4 , 863 , 604 : 1989 .
Nanko M. ; Komarneni S. ; Ishizaki K. Porous materials: Process technology and applications. Springer science & mediabusiness: 2013 Vol. 4 . doi: 10.1007/978-1-4615-5811-8 http://dx.doi.org/10.1007/978-1-4615-5811-8
Rahl F. J. ; Evanco M. A. ; Fredericks R. J. ; Reimschuessel A. C. Studies of the morphology of emulsion-grade polytetrafluoroethylene . J. Polym. Sci. Part A 2 Polym. Phys. , 1972 , 10 ( 7 ), 1337 - 1349 . doi: 10.1002/pol.1972.160100712 http://dx.doi.org/10.1002/pol.1972.160100712
Suwa T. ; Seguchi T. ; Takehisa M. ; Machi S. Effect of molecular weight on the crystalline structure of polytetrafluoroethylene as-polymerized . J. Polym. Sci. Polym. Phys. Ed. , 1975 , 13 ( 11 ), 2183 - 2194 . doi: 10.1002/pol.1975.180131110 http://dx.doi.org/10.1002/pol.1975.180131110
Ferry L. ; Vigier G. ; Vassoille R. ; Bessede J. L. Study of polytetrafluoroethylene crystallization . Acta Polym. , 1995 , 46 ( 4 ), 300 - 306 . doi: 10.1002/actp.1995.010460403 http://dx.doi.org/10.1002/actp.1995.010460403
Hatzikiriakos S. G. ; Ariawan A. B. ; Ebnesajjad S. Paste extrusion of polytetrafluoroethylene (PTFE) fine powder resins . Can. J. Chem. Eng. , 2002 , 80 ( 6 ), 1153 - 1165 . doi: 10.1002/cjce.5450800617 http://dx.doi.org/10.1002/cjce.5450800617
Ranjbarzadeh-Dibazar A. ; Shokrollahi P. ; Barzin J. ; Rahimi A. Lubricant facilitated thermo-mechanical stretching of PTFE and morphology of the resulting membranes . J. Membr. Sci. , 2014 , 470 , 458 - 469 . doi: 10.1016/j.memsci.2014.07.062 http://dx.doi.org/10.1016/j.memsci.2014.07.062
Caddock B. D. ; Evans K. E. Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties . J. Phys. D: Appl. Phys. , 1989 , 22 ( 12 ), 1877 - 1882 . doi: 10.1088/0022-3727/22/12/012 http://dx.doi.org/10.1088/0022-3727/22/12/012
Evans K. E. ; Caddock B. D. Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation . J. Phys. D: Appl. Phys. , 1989 , 22 ( 12 ), 1883 - 1887 . doi: 10.1088/0022-3727/22/12/012 http://dx.doi.org/10.1088/0022-3727/22/12/012
Choi K. J. ; Spruiell J. E. Structure development in multistage stretching of PTFE films . J. Polym. Sci. Part B Polym. Phys. , 2010 , 48 ( 21 ), 2248 - 2256 . doi: 10.1002/polb.22107 http://dx.doi.org/10.1002/polb.22107
Jurczuk K. ; Galeski A. ; Piorkowska E. All-polymer nano composites with nanofibrillar inclusions generated in situ during compounding . Polymer , 2013 , 54 ( 17 ), 4617 - 4628 . doi: 10.1016/j.polymer.2013.06.039 http://dx.doi.org/10.1016/j.polymer.2013.06.039
Lau S. F. ; Suzuki H. ; Wunderlich B. The thermodynamic properties of polytetrafluoroethylene . J. Polym. Sci. Polym. Phys. Ed. , 1984 , 22 ( 3 ), 379 - 405 . doi: 10.1002/pol.1984.180220305 http://dx.doi.org/10.1002/pol.1984.180220305
Hernández A. ; Calvo J. I. ; Prádanos P. ; Tejerina F. Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method . J. Membr. Sci. , 1996 , 112 ( 1 ), 1 - 12 . doi: 10.1016/0376-7388(95)00025-9 http://dx.doi.org/10.1016/0376-7388(95)00025-9
Wang Y. X. ; Wu T. ; Fu Q. Competition of shearing and cavitation effects on the deformation behavior of isotactic polypropylene during stretching . Polymer , 2023 , 273 , 125888 . doi: 10.1016/j.polymer.2023.125888 http://dx.doi.org/10.1016/j.polymer.2023.125888
Lyu D. ; Chen R. ; Lu Y. ; Men Y. F. Subsequent but independent cavitation processes in isotactic polypropylene during stretching at small- and large-strain regimes . Ind. Eng. Chem. Res. , 2018 , 57 ( 27 ), 8927 - 8937 . doi: 10.1021/acs.iecr.8b01650 http://dx.doi.org/10.1021/acs.iecr.8b01650
Lyu D. ; Sun Y. Y. ; Lu Y. ; Liu L. Z. ; Chen R. ; Thompson G. ; Caton-Rose F. ; Coates P. ; Wang Y. ; Men Y. F. Suppressed cavitation in die-drawn isotactic polypropylene . Macromolecules , 2020 , 53 ( 12 ), 4863 - 4873 . doi: 10.1021/acs.macromol.0c00005 http://dx.doi.org/10.1021/acs.macromol.0c00005
0
浏览量
33
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构