浏览全部资源
扫码关注微信
1.东华大学材料科学与工程学院 先进纤维材料全国重点实验室 上海 201620
2.江苏万盛大伟化学有限公司 泰兴 225442
E-mail:mars@ws-chem.com
zyou@dhu.edu.cn
收稿日期:2025-01-08,
录用日期:2025-02-17,
网络出版日期:2025-04-27,
移动端阅览
吴佳妮, 王岳鹏, 钱博, 吴泽凯, 苏基林, 王艺涵, 李闯, 游正伟. 基于受阻脲键的可重加工聚(脲-氨酯)弹性体的无溶剂制备、性能及应用研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25012
Wu, J. N.; Wang, Y. P.; Qian, B.; Wu, Z. K.; Su, J. L.; Wang, Y. H.; Li, C.; You, Z. W. Solvent-free preparation, properties and applications of reprocessable poly(urea-urethane) elastomers based on hindered urea bonds. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25012
吴佳妮, 王岳鹏, 钱博, 吴泽凯, 苏基林, 王艺涵, 李闯, 游正伟. 基于受阻脲键的可重加工聚(脲-氨酯)弹性体的无溶剂制备、性能及应用研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25012 DOI: CSTR: 32057.14.GFZXB.2025.7361.
Wu, J. N.; Wang, Y. P.; Qian, B.; Wu, Z. K.; Su, J. L.; Wang, Y. H.; Li, C.; You, Z. W. Solvent-free preparation, properties and applications of reprocessable poly(urea-urethane) elastomers based on hindered urea bonds. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25012 DOI: CSTR: 32057.14.GFZXB.2025.7361.
近年来,通过引入动态共价键实现可重塑加工的热固性聚氨酯材料得到了广泛关注. 然而大多数动态聚氨酯都采用溶液聚合法. 溶剂的使用使工艺变得复杂,并增加了成本. 本研究选用已工业化生产的、含大位阻作用的仲胺型扩链剂、异佛尔酮二异氰酸酯(IPDI)、聚四氢呋喃二元醇(PTMG)和交联剂甘油以无溶剂本体聚合法,制备得到了一种含受阻脲键的动态聚脲弹性体. 原料廉价易得、生产过程绿色环保,具有良好的工业化生产前景. 利用红外光谱、紫外光谱、动态热机械分析、热重分析、流变测试表征了弹性体的结构和性质. 研究结果表明含受阻脲键的聚脲弹性体具备良好的机械性能(拉伸强度:13.0~24.5 MPa)、优异的回弹性与可重复加工性能. 我们进一步探究了所制备的聚脲弹性体的潜在应用,利用其制备了单电极摩擦纳米发电机(TENG),展示了其在电学上应用的潜力.
In recent years
thermoset polyurethane materials that can be remolded by introducing dynamic covalent bonds have received much attention. However
most dynamic polyurethanes are solution polymerized. The use of solvents complicates the process and increases the cost. In this study
a dynamic polyurea elastomer containing hindered urea bonds was prepared by solvent-free polymerization of an industrially produced secondary amine-type chain extender with isophorone diisocyanate (IPDI) and polytetrahydrofuran diol (PTMG). The raw materials are cheap and easy to obtain
and the preparation process is green and environmentally friendly
which has a good prospect for industrialized production. The structure and properties of the elastomer were characterized by infrared spectroscopy
ultraviolet spectroscopy
dynamic thermo-mechanical analysis
thermogravimetric analysis and rheological test. The results show that the polyurea elastomers containing hindered urea bonds have good mechanical properties (tensile strength: 13.0-24.5 MPa)
excellent resilience and reprocessability. In addition
we further explored the potential applications of the prepared polyurea elastomers by utilizing them to prepare a triboelectric nanogenerator (TENG)
demonstrating its potential for electrical applications.
Savani N. G. ; Naveen T. ; Dholakiya B. Z. A review on the synthesis of maleic anhydride based polyurethanes from renewable feedstock for different industrial applications . J. Polym. Res. , 2023 , 30 ( 5 ), 175 . doi: 10.1007/s10965-023-03543-7 http://dx.doi.org/10.1007/s10965-023-03543-7
Liang C. ; Gracida-Alvarez U. R. ; Gallant E. T. ; Gillis P. A. ; Marques Y. A. ; Abramo G. P. ; Hawkins T. R. ; Dunn J. B. Material flows of polyurethane in the United States . Environ. Sci. Technol. , 2021 , 55 ( 20 ), 14215 - 14224 . doi: 10.1021/acs.est.1c03654 http://dx.doi.org/10.1021/acs.est.1c03654
Akindoyo J. O. ; Beg M. D. H. ; Ghazali S. ; Islam M. R. ; Jeyaratnam N. ; Yuvaraj A. R. Polyurethane types, synthesis and applications-a review . RSC Adv. , 2016 , 6 ( 115 ), 114453 - 114482 . doi: 10.1039/c6ra14525f http://dx.doi.org/10.1039/c6ra14525f
Kong W. B. ; Yang Y. Y. ; Wang Y. J. ; Cheng H. F. ; Yan P. Y. ; Huang L. ; Ning J. Y. ; Zeng F. H. ; Cai X. F. ; Wang M. An ultra-low hysteresis, self-healing and stretchable conductor based on dynamic disulfide covalent adaptable networks . J. Mater. Chem. A , 2022 , 10 ( 4 ), 2012 - 2020 . doi: 10.1039/d1ta08737a http://dx.doi.org/10.1039/d1ta08737a
Somarathna H. M. C. C. ; Raman S. N. ; Mohotti D. ; Mutalib A. A. ; Badri K. H. The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review . Constr. Build. Mater. , 2018 , 190 , 995 - 1014 . doi: 10.1016/j.conbuildmat.2018.09.166 http://dx.doi.org/10.1016/j.conbuildmat.2018.09.166
Zheng K. K. ; Gu Q. H. ; Zhou D. ; Zhou M. R. ; Zhang L. Recent progress in surgical adhesives for biomedical applications . Smart Mater. Med. , 2022 , 3 , 41 - 65 . doi: 10.1016/j.smaim.2021.11.004 http://dx.doi.org/10.1016/j.smaim.2021.11.004
Koelmans A. A. ; Mohamed Nor N. H. ; Hermsen E. ; Kooi M. ; Mintenig S. M. ; De France J. Microplastics in freshwaters and drinking water: critical review and assessment of data quality . Water Res. , 2019 , 155 , 410 - 422 . doi: 10.1016/j.watres.2019.02.054 http://dx.doi.org/10.1016/j.watres.2019.02.054
Rossignolo G. ; Malucelli G. ; Lorenzetti A. Recycling of polyurethanes: where we are and where we are going . Green Chem. , 2024 , 26 ( 3 ), 1132 - 1152 . doi: 10.1039/d3gc02091f http://dx.doi.org/10.1039/d3gc02091f
Datta J. ; Kopczyńska P. ; Simón D. ; Rodríguez J. F. Thermo-chemical decomposition study of polyurethane elastomer through glycerolysis route with using crude and refined glycerine as a transesterification agent . J. Polym. Environ. , 2018 , 26 ( 1 ), 166 - 174 . doi: 10.1007/s10924-016-0932-y http://dx.doi.org/10.1007/s10924-016-0932-y
Zahedifar P. ; Pazdur L. ; Vande Velde C. M. L. ; Billen P. Multistage chemical recycling of polyurethanes and dicarbamates: a glycolysis-hydrolysis demonstration . Sustainability , 2021 , 13 ( 6 ), 3583 . doi: 10.3390/su13063583 http://dx.doi.org/10.3390/su13063583
Zhang L. Z. ; Liu Z. H. ; Wu X. L. ; Guan Q. B. ; Chen S. ; Sun L. J. ; Guo Y. F. ; Wang S. L. ; Song J. C. ; Jeffries E. M. ; He C. L. ; Qing F. L. ; Bao X. G. ; You Z. W. A highly efficient self-healing elastomer with unprecedented mechanical properties . Adv. Mater. , 2019 , 31 ( 23 ), 1901402 . doi: 10.1002/adma.201901402 http://dx.doi.org/10.1002/adma.201901402
Han J. S. ; Zhou Y. W. ; Bai G. H. ; Wei W. ; Liu X. Y. ; Li X. J. Mechanically robust, creep-resistant, intrinsic antibacterial and reprocessable dynamic polyurethane networks based on azine moieties . Mater. Chem. Front. , 2022 , 6 ( 4 ), 503 - 511 . doi: 10.1039/d1qm01346g http://dx.doi.org/10.1039/d1qm01346g
Zhang L. Z. ; You Z. W. Dynamic oxime-urethane bonds, a versatile unit of high performance self-healing polymers for diverse applications . Chinese J. Polym. Sci. , 2021 , 39 ( 10 ), 1281 - 1291 . doi: 10.1007/s10118-021-2625-9 http://dx.doi.org/10.1007/s10118-021-2625-9
Zhao Z. H. ; Zhao P. C. ; Chen S. Y. ; Zheng Y. X. ; Zuo J. L. ; Li C. H. Tough, reprocessable, and recyclable dynamic covalent polymers with ultrastable long-lived room-temperature phosphorescence . Angew. Chem. Int. Ed. , 2023 , 62 ( 22 ), e 202301993 . doi: 10.1002/anie.202301993 http://dx.doi.org/10.1002/anie.202301993
Yang S. J. ; Liu W. X. ; Guo J. ; Yang Z. S. ; Qiao Z. ; Zhang C. G. ; Li J. K. ; Xu J. ; Zhao N. Direct and catalyst-free ester metathesis reaction for covalent adaptable networks . J. Am. Chem. Soc. , 2023 , 145 ( 38 ), 20927 - 20935 . doi: 10.1021/jacs.3c06262 http://dx.doi.org/10.1021/jacs.3c06262
Nellepalli P. ; Patel T. ; Oh J. K. Dynamic covalent polyurethane network materials: synthesis and self-healability . Macromol. Rapid Commun. , 2021 , 42 ( 20 ), 2100391 . doi: 10.1002/marc.202100391 http://dx.doi.org/10.1002/marc.202100391
Zhao Z. H. ; Chen S. Y. ; Zhao P. C. ; Luo W. L. ; Luo Y. L. ; Zuo J. L. ; Li C. H. Mechanically adaptive polymers constructed from dynamic coordination equilibria . Angew. Chem. Int. Ed. , 2024 , 63 ( 17 ), e 202400758 . doi: 10.1002/anie.202400758 http://dx.doi.org/10.1002/anie.202400758
Wang M. ; Xie Q. Y. ; Pan J. S. ; Ma C. F. ; Zhang G. Z. Strong yet tough cross-linked oligosiloxane elastomer with impact-resistant and antifouling properties . Chem. Eng. J. , 2023 , 464 , 142769 . doi: 10.1016/j.cej.2023.142769 http://dx.doi.org/10.1016/j.cej.2023.142769
Zhang Z. P. ; Qian L. ; Cheng J. F. ; Xie Q. Y. ; Ma C. F. ; Zhang G. Z. Room-temperature self-healing polyurea with high puncture and impact resistances . Chem. Mater. , 2023 , 35 ( 4 ), 1806 - 1817 . doi: 10.1021/acs.chemmater.2c03782 http://dx.doi.org/10.1021/acs.chemmater.2c03782
Li Y. ; Wang Y. P. ; Wang S. ; Ye Z. J. ; Bian C. ; Xing X. L. ; Hong T. ; Jing X. L. Highly tunable and robust dynamic polymer networks via conjugated-hindered urea bonds . Macromolecules , 2022 , 55 ( 20 ), 9091 - 9102 . doi: 10.1021/acs.macromol.2c00681 http://dx.doi.org/10.1021/acs.macromol.2c00681
Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Mechanically robust, self-healable, and highly stretchable "living" crosslinked polyurethane based on a reversible CC bond . Adv. Funct. Mater. , 2018 , 28 ( 11 ), 1706050 . doi: 10.1002/adfm.201706050 http://dx.doi.org/10.1002/adfm.201706050
Liu W. X. ; Yang Z. S. ; Qiao Z. ; Zhang L. ; Zhao N. ; Luo S. Z. ; Xu J. Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds . Nat. Commun. , 2019 , 10 ( 1 ), 4753 . doi: 10.1038/s41467-019-12766-6 http://dx.doi.org/10.1038/s41467-019-12766-6
Ying H. Z. ; Cheng J. J. Hydrolyzable polyureas bearing hindered urea bonds . J. Am. Chem. Soc. , 2014 , 136 ( 49 ), 16974 - 16977 . doi: 10.1021/ja5093437 http://dx.doi.org/10.1021/ja5093437
Ying H. Z. ; Zhang Y. F. ; Cheng J. J. Dynamic urea bond for the design of reversible and self-healing polymers . Nat. Commun. , 2014 , 5 , 3218 . doi: 10.1038/ncomms4218 http://dx.doi.org/10.1038/ncomms4218
Lu L. W. ; Xu J. B. ; Li J. C. ; Xing Y. D. ; Zhou Z. Q. ; Zhang F. A. High-toughness and intrinsically self-healing cross-linked polyurea elastomers with dynamic sextuple H-bonds . Macromolecules , 2024 , 57 ( 5 ), 2100 - 2109 . doi: 10.1021/acs.macromol.3c02202 http://dx.doi.org/10.1021/acs.macromol.3c02202
Lu X. Y. ; Zhang L. ; Zhang J. H. ; Wang C. ; Zhang A. M. Facile preparation of dual functional wearable devices based on hindered urea bond-integrated reprocessable polyurea and AgNWs . ACS Appl. Mater. Interfaces , 2022 , 14 ( 36 ), 41421 - 41432 . doi: 10.1021/acsami.2c11875 http://dx.doi.org/10.1021/acsami.2c11875
Wang Y. P. ; Yang L. ; Zhang L. Z. ; Huang H. F. ; Qian B. ; Gu S. J. ; You Z. W. Solvent-free synthesis of self-healable and recyclable crosslinked polyurethane based on dynamic oxime-urethane bonds . Chinese J. Polym. Sci. , 2023 , 41 ( 11 ), 1725 - 1732 . doi: 10.1007/s10118-023-3009-0 http://dx.doi.org/10.1007/s10118-023-3009-0
Yang Z. H. ; Zang H. ; Wu G. F. Study of solvent-free sulfonated waterborne polyurethane as an advanced leather finishing material . J. Polym. Res. , 2019 , 26 ( 9 ), 213 . doi: 10.1007/s10965-019-1884-4 http://dx.doi.org/10.1007/s10965-019-1884-4
Tian Z. Y. ; Feng K. ; Zhang F. P. ; Du P. F. Solvent-free synthesis of pendant crosslinked polyurethane hot melt adhesive via dynamic Diels-Alder reaction . Int. J. Adhes. Adhes. , 2024 , 132 , 103739 . doi: 10.1016/j.ijadhadh.2024.103739 http://dx.doi.org/10.1016/j.ijadhadh.2024.103739
Liu W. X. ; Zhang C. ; Zhang H. ; Zhao N. ; Yu Z. X. ; Xu J. Oxime-based and catalyst-free dynamic covalent polyurethanes . J. Am. Chem. Soc. , 2017 , 139 ( 25 ), 8678 - 8684 . doi: 10.1021/jacs.7b03967 http://dx.doi.org/10.1021/jacs.7b03967
Zhu C. ; Wu J. W. ; Yan J. H. ; Liu X. Q. Advanced fiber materials for wearable electronics . Adv. Fiber Mater. , 2023 , 5 ( 1 ), 12 - 35 . doi: 10.1007/s42765-022-00212-0 http://dx.doi.org/10.1007/s42765-022-00212-0
Lee S. ; An G. H. Interface engineering of carbon fiber-based electrode for wearable energy storage devices . Adv. Fiber Mater. , 2023 , 5 ( 5 ), 1749 - 1758 . doi: 10.1007/s42765-023-00303-6 http://dx.doi.org/10.1007/s42765-023-00303-6
Fang Z. Y. ; Wang L. ; Liang C. Y. ; Qiu J. H. ; Zhang T. Y. ; Xu D. H. ; Qi D. P. ; Luan S. F. ; Shi H. C. Bioinspired ionic elastomer with skin-like piezo-ionic dynamics enabled by a self-confined multi-interaction network . Adv. Funct. Mater. , 2024 , 2418583 . doi: 10.1002/adfm.202418583 http://dx.doi.org/10.1002/adfm.202418583
Wang Y. F. ; Yu X. H. ; Zhang H. P. ; Fan X. S. ; Zhang Y. T. ; Li Z. B. ; Miao Y. E. ; Zhang X. ; Liu T. X. Highly stretchable, soft, low-hysteresis, and self-healable ionic conductive elastomers enabled by long, functional cross-linkers . Macromolecules , 2022 , 55 ( 17 ), 7845 - 7855 . doi: 10.1021/acs.macromol.2c00563 http://dx.doi.org/10.1021/acs.macromol.2c00563
Yu Y. R. ; Wang X. C. ; Yang C. Y. ; Shang L. R. Twisted fiber batteries for wearable electronic devices . Smart Mater. Med. , 2022 , 3 , 1 - 3 . doi: 10.1016/j.smaim.2021.11.001 http://dx.doi.org/10.1016/j.smaim.2021.11.001
Wang Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors . ACS Nano , 2013 , 7 ( 11 ), 9533 - 9557 . doi: 10.1021/nn404614z http://dx.doi.org/10.1021/nn404614z
0
浏览量
51
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构