浏览全部资源
扫码关注微信
1.浙江理工大学 纺织科学与工程学院(国际丝绸学院) 杭州 310018
2.浙江省现代纺织技术创新中心 绍兴 312000
E-mail: sunhui@zstu.edu.cn
收稿日期:2025-01-22,
录用日期:2025-03-22,
网络出版日期:2025-05-16,
移动端阅览
谢有秀, 李逢春, 杨潇东, 张德伟, 孙辉, 于斌. 基于热塑性聚氨酯熔喷非织造材料的高性能柔性应变传感器. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25025
Xie, Y. X.; Li, F. C.; Yang, X. D.; Zhang, D. W.; Sun, H.; Yu, B. High performance flexible strain sensor based on thermoplastic polyurethane melt-blown nonwovens. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25025
谢有秀, 李逢春, 杨潇东, 张德伟, 孙辉, 于斌. 基于热塑性聚氨酯熔喷非织造材料的高性能柔性应变传感器. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25025 DOI: CSTR: 32057.14.GFZXB.2025.7376.
Xie, Y. X.; Li, F. C.; Yang, X. D.; Zhang, D. W.; Sun, H.; Yu, B. High performance flexible strain sensor based on thermoplastic polyurethane melt-blown nonwovens. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25025 DOI: CSTR: 32057.14.GFZXB.2025.7376.
为了制备同时具有高灵敏度、宽有效监测范围且稳定性能好的柔性可穿戴应变传感器,选择热塑性聚氨酯熔喷非织造材料(TPU MB)作为柔性基底,使用简单的机械搅拌法将炭黑(CB)和二硫化钼(MoS
2
)纳米片逐层组装到TPU MB表面形成的“三明治”结构,制备CB/MoS
2
/CB@TPU MB柔性应变传感器. 讨论了CB的浓度对传感器传感性能的影响. 得益于MoS
2
和CB之间的协同作用,当CB的浓度为4 mg/mL时,所制备的CB
4
/MoS
2
/CB
4
@TPU MB柔性应变传感器展现出了宽的有效监测范围(0%~530%)、高的灵敏度(GF = 2727.6)、快速的响应时间和回复时间(220 ms和396 ms)以及出色的耐久性(1000次拉伸循环). 该传感器能够成功地监测大幅度的人体运动、微小的面部表情变化、不同声带振动模式,在智能可穿戴设备领域具有广阔的应用前景.
To prepare a flexible wearable strain sensor with high sensitivity
wide effective monitoring range
and good stability
thermoplastic polyurethane melt-blown nonwoven material (TPU MB) was selected as the flexible substrate. Carbon black (CB) and molybdenum disulfide (MoS
2
) nanosheets were assembled layer by layer on the surface of TPU MB
via
a simple mechanical stirring to obtain CB/MoS
2
/CB@TPU MB flexible strain sensor. The influence of CB concentration on the sensor's sensing performance was discussed. Benefited from the synergistic effect between MoS
2
and CB
when the concentration of CB is 4 mg/mL
the prepared CB
4
/MoS
2
/CB
4
@TPU MB flexible strain sensor exhibits a wide effective monitoring range (0%-530%)
high sensitivity (GF=2727.6)
rapid response time and recovery time (220 ms and 396 ms) and excellent durability (1000 tensile cycles). This sensor successfully applied to monitor large-scale human movement
subtle facial expression changes
and different vocal cord vibration modes
and has a broad application prospect in the field of smart wearable devices.
Yao Y. B. ; Dai H. F. ; Ji M. N. ; Han Y. ; Jiang B. ; Cheng C. ; Song X. L. ; Song Y. ; Wu G. F. Flexible strain sensor based on AgNWs/MXene/SEBS with high sensitivity and wide strain range . Electron. Mater. Lett. , 2024 , 20 ( 6 ), 684 - 693 . doi: 10.1007/s13391-024-00514-y http://dx.doi.org/10.1007/s13391-024-00514-y
Lu Z. L. ; Wang J. ; He L. ; Song J. N. ; Yang Z. ; Hammad F. A. High-performance multidirectional flexible strain sensor for human motion and health monitoring . ACS Appl. Mater. Interfaces , 2024 , 16 ( 31 ), 41409 - 41420 . doi: 10.1021/acsami.4c04583 http://dx.doi.org/10.1021/acsami.4c04583
Lin H. J. ; Wang J. ; Cao W. ; Wang H. N. ; Rui K. ; Yan Y. ; Zhu J. X. Hierarchical conducting networks constructed as resistive strain sensors for personal healthcare monitoring and robotic arm control . Chem. Eng. J. , 2024 , 490 , 151840 . doi: 10.1016/j.cej.2024.151840 http://dx.doi.org/10.1016/j.cej.2024.151840
Adepu V. ; Tathacharya M. ; Mattela V. ; Sahatiya P. Development of WS 2 /MXene (Ti 3 C 2 T x ) nanohybrid based multi-functional textronic sensor for non-invasive personal healthcare monitoring . Flex. Print. Electron., 2023, 8 ( 1 ), 015001 .
Sun T. M. ; Feng B. ; Huo J. P. ; Xiao Y. ; Wang W. G. ; Peng J. ; Li Z. H. ; Du C. J. ; Wang W. X. ; Zou G. S. ; Liu L. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses . Nanomicro Lett. , 2023 , 16 ( 1 ), 14 . doi: 10.1007/s40820-023-01235-x http://dx.doi.org/10.1007/s40820-023-01235-x
Liu W. B. ; Duo Y. N. ; Chen X. Y. ; Chen B. H. ; Bu T. Z. ; Li L. ; Duan J. X. ; Zuo Z. H. ; Wang Y. ; Fang B. ; Sun F. C. ; Xu K. ; Ding X. L. ; Zhang C. ; Wen L. An intelligent robotic system capable of sensing and describing objects based on bimodal, self-powered flexible sensors . Adv. Funct. Mater. , 2023 , 33 ( 41 ), 2306368 . doi: 10.1002/adfm.202306368 http://dx.doi.org/10.1002/adfm.202306368
Fei F. ; Jia Z. K. ; Wu C. C. ; Lu X. ; Li Z. Design of a capacitive tactile sensor array system for human-computer interaction . Sensors , 2024 , 24 ( 20 ), 6629 . doi: 10.3390/s24206629 http://dx.doi.org/10.3390/s24206629
Fang K. C. ; Wan Y. ; Wei J. J. ; Chen T. Hydrogel-based sensors for human-machine interaction . Langmuir , 2023 , 39 ( 48 ), 16975 - 16985 . doi: 10.1021/acs.langmuir.3c02444 http://dx.doi.org/10.1021/acs.langmuir.3c02444
Qin W. F. ; Geng J. H. ; Lin C. X. ; Li G. ; Peng H. ; Xue Y. S. ; Zhou B. ; Liu G. C. Flexible multifunctional TPU strain sensors with improved sensitivity and wide sensing range based on MXene/AgNWs . J. Mater. Sci. Mater. Electron. , 2023 , 34 ( 6 ), 564 . doi: 10.1007/s10854-023-09950-2 http://dx.doi.org/10.1007/s10854-023-09950-2
Datta J. ; Kasprzyk P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review . Polym. Eng. Sci. , 2018 , 58 ( S1 ), E14 - E35 . doi: 10.1002/pen.24633 http://dx.doi.org/10.1002/pen.24633
魏垲东 , 柯凯 , 尹波 . 弱溶胀作用制备的模量异质微结构纤维膜应变传感器 . 高分子材料科学与工程 , 2024 , 40 ( 10 ), 109 - 116 . doi: 10.16865/j.cnki.1000-7555.2024.0193 http://dx.doi.org/10.16865/j.cnki.1000-7555.2024.0193
Zhao H. D. ; Xiao X. F. ; Xing H. ; Jia X. ; Jin S. P. Synthesis of an ultrathin, self-adhesive, tough, and frigostable BP@PVP/TPU ionogel for strain sensors by electrospinning . Mater. Today Chem. , 2024 , 38 , 102102 . doi: 10.1016/j.mtchem.2024.102102 http://dx.doi.org/10.1016/j.mtchem.2024.102102
Sun H. ; Xie Y. X. ; Liu X. Y. ; Chen G. Y. ; Li F. C. ; Xu L. ; Yu B. High-performance flexible strain sensor based on thermoplastic polyurethane melt-blown nonwoven with molybdenum disulfide for human motion monitoring . ACS Appl. Electron. Mater. , 2024 , 6 ( 10 ), 7551 - 7562 . doi: 10.1021/acsaelm.4c01385 http://dx.doi.org/10.1021/acsaelm.4c01385
He J. Q. ; Zou X. L. ; Wang W. J. ; Chen M. M. ; Jiang S. ; Cui C. ; Tang H. ; Yang L. ; Guo R. H. Highly stretchable, highly sensitive, and antibacterial electrospun nanofiber strain sensors with low detection limit and stable CNT/MXene/CNT sandwich conductive layers for human motion detection . Ind. Eng. Chem. Res. , 2023 , 62 ( 21 ), 8327 - 8338 . doi: 10.1021/acs.iecr.3c00905 http://dx.doi.org/10.1021/acs.iecr.3c00905
Jiang S. ; Jiang W. B. ; Wang J. F. Process optimization of simple preparation of AgNPs by polyol method and performance study of a strain sensor . J. Mol. Struct. , 2023 , 1292 , 136158 . doi: 10.1016/j.molstruc.2023.136158 http://dx.doi.org/10.1016/j.molstruc.2023.136158
Huang J. ; Li Z. Y. ; Kang T. L. ; Wei W. ; Liu F. X. ; Xu X. F. ; Liu Z. J. Fabrication of styrene-butadienestyrene (SBS) matrix-based flexible strain sensors with brittle cellulose nanocrystal (CNC)/carbon black (CB) segregated networks . Compos. Struct. , 2023 , 320 , 117231 . doi: 10.1016/j.compstruct.2023.117231 http://dx.doi.org/10.1016/j.compstruct.2023.117231
Manzeli S. ; Ovchinnikov D. ; Pasquier D. ; Yazyev O. V. ; Kis A. 2D transition metal dichalcogenides . Nat. Rev. Mater. , 2017 , 2 , 17033 . doi: 10.1038/natrevmats.2017.33 http://dx.doi.org/10.1038/natrevmats.2017.33
Gong L. B. ; Feng L. ; Zheng Y. W. ; Luo Y. ; Zhu D. ; Chao J. ; Su S. ; Wang L. H. Molybdenum disulfide-based nanoprobes: preparation and sensing application . Biosensors , 2022 , 12 ( 2 ), 87 . doi: 10.3390/bios12020087 http://dx.doi.org/10.3390/bios12020087
Alam M. N. ; Kumar V. ; Lee D. J. ; Choi J. Synergistically toughened silicone rubber nanocomposites using carbon nanotubes and molybdenum disulfide for stretchable strain sensors . Compos. Part B Eng. , 2023 , 259 , 110759 . doi: 10.1016/j.compositesb.2023.110759 http://dx.doi.org/10.1016/j.compositesb.2023.110759
Dong H. ; Sun J. C. ; Liu X. M. ; Jiang X. D. ; Lu S. W. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection . ACS Appl. Mater. Interfaces , 2022 , 14 ( 13 ), 15504 - 15516 . doi: 10.1021/acsami.1c23567 http://dx.doi.org/10.1021/acsami.1c23567
Li S. M. ; Li R. Q. ; González O. G. ; Chen T. J. ; Xiao X. L. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection . Compos. Sci. Technol. , 2021 , 203 , 108617 . doi: 10.1016/j.compscitech.2020.108617 http://dx.doi.org/10.1016/j.compscitech.2020.108617
Zhang M. ; Zhang J. Z. Highly selective NH 3 sensor based on MoS 2 /WS 2 heterojunction . Nanomaterials , 2023 , 13 ( 12 ), 1835 . doi: 10.3390/nano13121835 http://dx.doi.org/10.3390/nano13121835
Guo X. H. ; Hong W. Q. ; Hu B. ; Zhang T. X. ; Jin C. C. ; Yao X. M. ; Li H. J. ; Yan Z. H. ; Jiao Z. Y. ; Wang M. ; Ye B. ; Wei S. Q. ; Xia Y. ; Hong Q. ; Xu Y. H. ; Zhao Y. N. Human touch sensation-inspired, ultrawide-sensing-range, and high-robustness flexible piezoresistive sensor based on CB/MXene/SR/fiber nanocomposites for wearable electronics . Compos. Struct. , 2023 , 321 , 117329 . doi: 10.1016/j.compstruct.2023.117329 http://dx.doi.org/10.1016/j.compstruct.2023.117329
Rana V. ; Gangwar P. ; Meena J. S. ; Ramesh A. K. ; Bhat K. N. ; Das S. ; Singh P. A highly sensitive wearable flexible strain sensor based on polycrystalline MoS 2 thin film . Nanotechnology , 2020 , 31 ( 38 ), 385501 . doi: 10.1088/1361-6528/ab9970 http://dx.doi.org/10.1088/1361-6528/ab9970
Abd Hamid F. K. ; Hasan M. N. ; Murty G. E. ; Ahmad Asri M. I. ; Saleh T. ; Mohamed Ali M. S. Resistive strain sensors based on carbon black and multi-wall carbon nanotube composites . Sens. Actuat. A Phys. , 2024 , 366 , 114960 . doi: 10.1016/j.sna.2023.114960 http://dx.doi.org/10.1016/j.sna.2023.114960
Yamada T. ; Hayamizu Y. ; Yamamoto Y. ; Yomogida Y. ; Izadi-Najafabadi A. ; Futaba D. N. ; Hata K. J. A stretchable carbon nanotube strain sensor for human-motion detection . Nat. Nanotechnol. , 2011 , 6 ( 5 ), 296 - 301 . doi: 10.1038/nnano.2011.36 http://dx.doi.org/10.1038/nnano.2011.36
Qu X. Y. ; Wu Y. C. ; Ji P. ; Wang B. X. ; Liang Q. Q. ; Han Z. L. ; Li J. ; Wu Z. T. ; Chen S. Y. ; Zhang G. L. ; Wang H. P. Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range . ACS Appl. Mater. Interfaces , 2022 , 14 ( 25 ), 29167 - 29175 . doi: 10.1021/acsami.2c04559 http://dx.doi.org/10.1021/acsami.2c04559
Zhang W. Y. ; Liu Q. ; Chen P. Flexible strain sensor based on carbon black/silver nanoparticles composite for human motion detection . Materials , 2018 , 11 ( 10 ), 1836 . doi: 10.3390/ma11101836 http://dx.doi.org/10.3390/ma11101836
Chang S. P. ; Chen T. H. ; Liou G. Y. ; Huang W. L. ; Lai W. C. ; Chang S. J. ; Chen J. F. Investigating the photodetectors and pH sensors of two-dimensional MoS 2 with different substrates . ECS J. Solid State Sci. Technol. , 2021 , 10 ( 5 ), 055015 . doi: 10.1149/2162-8777/ac02a2 http://dx.doi.org/10.1149/2162-8777/ac02a2
Xia J. ; He L. ; Lu Z. ; Liu L. ; Song J. ; Chen S. ; Wang Q. ; Hammad F. A. ; Tian Y. Stretchable and Sensitive Strain Sensors Based on CB/MWCNTs-TPU for Human Motion Capture and Health Monitoring . ACS Appl. Nano Mater , 2023 , 6 ( 11 ), 9736 - 9745 . doi: 10.1021/acsanm.3c01447 http://dx.doi.org/10.1021/acsanm.3c01447
Qiu D. X. ; Chu Y. C. ; Zeng H. X. ; Xu H. H. ; Dan G. Stretchable MoS 2 electromechanical sensors with ultrahigh sensitivity and large detection range for skin-on monitoring . ACS Appl. Mater. Interfaces , 2019 , 11 ( 40 ), 37035 - 37042 . doi: 10.1021/acsami.9b11554 http://dx.doi.org/10.1021/acsami.9b11554
Lin Y. K. ; Yin Q. ; Jia H. B. ; Ji Q. M. ; Wang J. Y. Ultrasensitive and highly stretchable bilayer strain sensor based on bandage-assisted woven fabric with reduced graphene oxide and liquid metal . Chem. Eng. J. , 2024 , 487 , 150777 . doi: 10.1016/j.cej.2024.150777 http://dx.doi.org/10.1016/j.cej.2024.150777
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构