浏览全部资源
扫码关注微信
南开大学化学学院 高分子化学研究所 功能高分子材料教育部重点实验室 天津 300071
E-mail: shilinqi@nankai.edu.cn
E-mail: marujiang@nankai.edu.cn
收稿日期:2025-01-24,
录用日期:2025-02-24,
网络出版日期:2025-04-24,
移动端阅览
何苏宁, 刘赛男, 张婷婷, 史林启, 马如江. 基于动态共价键的纳米载体用于蛋白质药物递送的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25027
He, S. N.; Liu, S. N.; Zhang, T. T.; Shi, L. Q.; Ma, R. J. The Research progress on dynamic covalent bonding-based nanocarriers for protein drug delivery. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25027
何苏宁, 刘赛男, 张婷婷, 史林启, 马如江. 基于动态共价键的纳米载体用于蛋白质药物递送的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25027 DOI: CSTR: 32057.14.GFZXB.2025.7370.
He, S. N.; Liu, S. N.; Zhang, T. T.; Shi, L. Q.; Ma, R. J. The Research progress on dynamic covalent bonding-based nanocarriers for protein drug delivery. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25027 DOI: 10.11777/j.issn1000-3304.2025.25027. CSTR: 32057.14.GFZXB.2025.7370.
与小分子药物相比,蛋白质药物具有特异性高、毒性小的优点,在许多重大疾病的治疗中发挥重要作用. 但蛋白质药物在临床应用中也面临诸多挑战,如稳定性差,免疫原性强,易被快速降解、清除等,最终导致其生物利用度低. 为此,人们构建了多种蛋白质药物递送体系以解决上述问题. 利用动态共价键构建的递送体系不仅能提高蛋白质药物在递送过程中的稳定性,还能实现病灶部位的刺激响应性药物释放,有效提高蛋白质药物的生物利用度和治疗效果. 本文概述了利用共价键、非共价相互作用以及动态共价键构建的蛋白质药物递送体系,重点介绍了基于动态共价键的蛋白质药物递送体系的构建方法、药物释放机制以及最新应用研究进展,以期为开发更加高效、实用的蛋白质药物递送体系提供借鉴.
Compared to small molecule drugs
protein drugs exhibit high specificity and low toxicity
making them pivotal in the treatment of numerous serious diseases. Nevertheless
they confront several challenges in clinical application
including instability
high immunogenicity
and susceptibility to rapid degradation and elimination
ultimately resulting in low bioavailability. To overcome these hurdles
various protein drug delivery systems have been devised. Notably
delivery systems utilizing dynamic covalent bonds not only bolster the stability of protein drugs during the delivery process but also facilitate stimulus-responsive drug release at the target site
thereby significantly enhancing the bioavailability and therapeutic efficacy of protein drugs. This paper briefly introduces protein drug delivery systems based on covalent bonds
non-covalent interactions
and dynamic covalent bonds. It comprehensively reviews the construction methodologies
drug release mechanisms
and the latest advancements in the application of protein drug delivery systems based on dynamic covalent bonds. The aim is to provide insights and guidance for the development of more efficient and practical protein drug delivery systems.
Leader B. ; Baca Q. J. ; Golan D. E. Protein therapeutics: a summary and pharmacological classification . Nat. Rev. Drug Discov. , 2008 , 7 ( 1 ), 21 - 39 . doi: 10.1038/nrd2399 http://dx.doi.org/10.1038/nrd2399
Banting F. G. ; Best C. H. ; Collip J. B. ; Campbell W. R. ; Fletcher A. A. Pancreatic extracts in the treatment of diabetes mellitus: preliminary report . 1922. CMAJ , 1991 , 145 ( 10 ), 1281 - 1286 .
Goeddel D. V. ; Kleid D. G. ; Bolivar F. ; Heyneker H. L. ; Yansura D. G. ; Crea R. ; Hirose T. ; Kraszewski A. ; Itakura K. ; Riggs A. D. Expression in Escherichia coli of chemically synthesized genes for human insulin . Proc. Natl. Acad. Sci. USA , 1979 , 76 ( 1 ), 106 - 110 . doi: 10.1073/pnas.76.1.106 http://dx.doi.org/10.1073/pnas.76.1.106
Berraondo P. ; Sanmamed M. F. ; Ochoa M. C. ; Etxeberria I. ; Aznar M. A. ; Pérez-Gracia J. L. ; Rodríguez-Ruiz M. E. ; Ponz-Sarvise M. ; Castañón E. ; Melero I. Cytokines in clinical cancer immunotherapy . Br. J. Cancer , 2019 , 120 ( 1 ), 6 - 15 . doi: 10.1038/s41416-018-0328-y http://dx.doi.org/10.1038/s41416-018-0328-y
Grilo A. L. ; Mantalaris A. The increasingly human and profitable monoclonal antibody market . Trends Biotechnol. , 2019 , 37 ( 1 ), 9 - 16 . doi: 10.1016/j.tibtech.2018.05.014 http://dx.doi.org/10.1016/j.tibtech.2018.05.014
Vellard M. The enzyme as drug: application of enzymes as pharmaceuticals . Curr. Opin. Biotechnol. , 2003 , 14 ( 4 ), 444 - 450 . doi: 10.1016/s0958-1669(03)00092-2 http://dx.doi.org/10.1016/s0958-1669(03)00092-2
Walsh G. Biopharmaceutical benchmarks 2018 . Nat. Biotechnol. , 2018 , 36 ( 12 ), 1136 - 1145 . doi: 10.1038/nbt.4305 http://dx.doi.org/10.1038/nbt.4305
Verdin P. Top companies and drugs by sales in 2023 . Nat. Rev. Drug Discov. , 2024 , 23 ( 4 ), 240 . doi: 10.1038/d41573-024-00041-3 http://dx.doi.org/10.1038/d41573-024-00041-3
Zuris J. A. ; Thompson D. B. ; Shu Y. L. ; Guilinger J. P. ; Bessen J. L. ; Hu J. H. ; Maeder M. L. ; Keith Joung J. ; Chen Z. Y. ; Liu D. R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo . Nat. Biotechnol. , 2015 , 33 ( 1 ), 73 - 80 . doi: 10.1038/nbt.3081 http://dx.doi.org/10.1038/nbt.3081
Vinogradova E. V. ; Zhang X. Y. ; Remillard D. ; Lazar D. C. ; Suciu R. M. ; Wang Y. J. ; Bianco G. ; Yamashita Y. ; Crowley V. M. ; Schafroth M. A. ; Yokoyama M. ; Konrad D. B. ; Lum K. M. ; Simon G. M. ; Kemper E. K. ; Lazear M. R. ; Yin S. F. ; Blewett M. M. ; Dix M. M. ; Nguyen N. ; Shokhirev M. N. ; Chin E. N. ; Lairson L. L. ; Melillo B. ; Schreiber S. L. ; Forli S. ; Teijaro J. R. ; Cravatt B. F. An activity-guided map of electrophile-cysteine interactions in primary human T cells . Cell , 2020 , 182 ( 4 ), 1009 - 1026 .e 29 . doi: 10.1016/j.cell.2020.07.001 http://dx.doi.org/10.1016/j.cell.2020.07.001
Dai J. Y. ; Liang K. ; Zhao S. ; Jia W. T. ; Liu Y. ; Wu H. K. ; Lv J. ; Cao C. ; Chen T. ; Zhuang S. T. ; Hou X. M. ; Zhou S. J. ; Zhang X. N. ; Chen X. W. ; Huang Y. Y. ; Xiao R. P. ; Wang Y. L. ; Luo T. P. ; Xiao J. Y. ; Wang C. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis . Proc. Natl. Acad. Sci. USA , 2018 , 115 ( 26 ), E5896 - E5905 . doi: 10.1073/pnas.1801745115 http://dx.doi.org/10.1073/pnas.1801745115
Zaccardi F. ; Webb D. R. ; Yates T. ; Davies M. J. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90 -year perspective. Postgrad. Med. J. , 2016 , 92 ( 1084 ), 63 - 69 . doi: 10.1136/postgradmedj-2015-133281 http://dx.doi.org/10.1136/postgradmedj-2015-133281
Barrientos S. ; Brem H. ; Stojadinovic O. ; Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing . Wound Repair Regen. , 2014 , 22 ( 5 ), 569 - 578 . doi: 10.1111/wrr.12205 http://dx.doi.org/10.1111/wrr.12205
Tian L. ; Qiang T. T. ; Liang C. Y. ; Ren X. D. ; Jia M. Y. ; Zhang J. Y. ; Li J. Y. ; Wan M. G. ; Xin Y. W. ; Li H. ; Cao W. Q. ; Liu H. RNA-dependent RNA polymerase (RdRp) inhibitors: the current landscape and repurposing for the COVID-19 pandemic . Eur. J. Med. Chem. , 2021 , 213 , 113201 . doi: 10.1016/j.ejmech.2021.113201 http://dx.doi.org/10.1016/j.ejmech.2021.113201
Chan A. ; Tsourkas A. Intracellular protein delivery: approaches, challenges, and clinical applications . BME Front. , 2024 , 5 , 0035 . doi: 10.34133/bmef.0035 http://dx.doi.org/10.34133/bmef.0035
Bilati U. ; Allémann E. ; Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles . Eur. J. Pharm. Biopharm. , 2005 , 59 ( 3 ), 375 - 388 . doi: 10.1016/j.ejpb.2004.10.006 http://dx.doi.org/10.1016/j.ejpb.2004.10.006
李怡静 , 龚雪峰 , 王冬 , 杨洲 , 曹晖 , 王磊 . 基于多肽的药物递送系统研究进展 . 高分子学报 , 2022 , 53 ( 5 ), 445 - 456 . doi: 10.11777/j.issn1000-3304.2021.21369 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21369
Manning M. C. ; Chou D. K. ; Murphy B. M. ; Payne R. W. ; Katayama D. S. Stability of protein pharmaceuticals: an update . Pharm. Res. , 2010 , 27 ( 4 ), 544 - 575 . doi: 10.1007/s11095-009-0045-6 http://dx.doi.org/10.1007/s11095-009-0045-6
孙瑞 , 邱娜莎 , 申有青 . 高分子抗肿瘤纳米药物的挑战与发展 . 高分子学报 , 2019 , 50 ( 6 ), 588 - 601 . doi: 10.11777/j.issn1000-3304.2019.19005 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19005
Yu M. ; Wu J. ; Shi J. J. ; Farokhzad O. C. Nanotechnology for protein delivery: overview and perspectives . J. Control. Release , 2016 , 240 , 24 - 37 . doi: 10.1016/j.jconrel.2015.10.012 http://dx.doi.org/10.1016/j.jconrel.2015.10.012
Ebrahimi S. B. ; Samanta D. Engineering protein-based therapeutics through structural and chemical design . Nat. Commun. , 2023 , 14 ( 1 ), 2411 . doi: 10.1038/s41467-023-38039-x http://dx.doi.org/10.1038/s41467-023-38039-x
Milton Harris J. ; Chess R. B. Effect of pegylation on pharmaceuticals . Nat. Rev. Drug Discov. , 2003 , 2 ( 3 ), 214 - 221 . doi: 10.1038/nrd1033 http://dx.doi.org/10.1038/nrd1033
Egrie J. C. ; Browne J. K. Development and characterization of novel erythropoiesis stimulating protein (NESP) . Nephrol. Dial. Transplant. , 2001 , 16 (Suppl 3 ), 3 - 13 . doi: 10.1093/ndt/16.suppl_3.3 http://dx.doi.org/10.1093/ndt/16.suppl_3.3
Haddadzadegan S. ; Dorkoosh F. ; Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers . Adv. Drug Deliv. Rev. , 2022 , 182 , 114097 . doi: 10.1016/j.addr.2021.114097 http://dx.doi.org/10.1016/j.addr.2021.114097
Vivero-Escoto J. L. ; Huang Y. T. Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications . Int. J. Mol. Sci. , 2011 , 12 ( 6 ), 3888 - 3927 . doi: 10.3390/ijms12063888 http://dx.doi.org/10.3390/ijms12063888
Lu Y. ; Sun W. J. ; Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery . J. Control. Release , 2014 , 194 , 1 - 19 . doi: 10.1016/j.jconrel.2014.08.015 http://dx.doi.org/10.1016/j.jconrel.2014.08.015
Sletten E. ; Bertozzi C. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality . Angew. Chem. Int. Ed. , 2009 , 48 ( 38 ), 6974 - 6998 . doi: 10.1002/anie.200900942 http://dx.doi.org/10.1002/anie.200900942
Liu B. ; Singh K. ; Gong S. ; Canakci M. ; Osborne B. A. ; Thayumanavan S. Protein-antibody conjugates (PACs): a plug-and-play strategy for covalent conjugation and targeted intracellular delivery of pristine proteins . Angew. Chem. Int. Ed. , 2021 , 60 ( 23 ), 12813 - 12818 . doi: 10.1002/anie.202103106 http://dx.doi.org/10.1002/anie.202103106
Adhav V. A. ; Saikrishnan K. The realm of unconventional noncovalent interactions in proteins: their significance in structure and function . ACS Omega , 2023 , 8 ( 25 ), 22268 - 22284 . doi: 10.1021/acsomega.3c00205 http://dx.doi.org/10.1021/acsomega.3c00205
Yang J. ; Zeng Y. F. ; Liu Y. F. ; Gao M. ; Liu S. ; Su Z. D. ; Huang Y. Q. Electrostatic interactions in molecular recognition of intrinsically disordered proteins . J. Biomol. Struct. Dyn. , 2020 , 38 ( 16 ), 4883 - 4894 . doi: 10.1080/07391102.2019.1692073 http://dx.doi.org/10.1080/07391102.2019.1692073
Lee Y. ; Ishii T. ; Cabral H. ; Kim H. ; Seo J. H. ; Nishiyama N. ; Oshima H. ; Osada K. ; Kataoka K. Charge-conversional polyionic complex micelles: efficient nanocarriers for protein delivery into cytoplasm . Angew. Chem. Int. Ed. , 2009 , 48 ( 29 ), 5309 - 5312 . doi: 10.1002/anie.200900064 http://dx.doi.org/10.1002/anie.200900064
Lee Y. ; Ishii T. ; Kim H. ; Nishiyama N. ; Hayakawa Y. ; Itaka K. ; Kataoka K. Efficient delivery of bioactive antibodies into the cytoplasm of living cells by charge-conversional polyion complex micelles . Angew. Chem. Int. Ed. , 2010 , 49 ( 14 ), 2552 - 2555 . doi: 10.1002/anie.200905264 http://dx.doi.org/10.1002/anie.200905264
He M. J. ; Cheng Z. Y. ; Wang Z. K. ; Li M. ; Liang H. X. ; Liu H. ; Yu L. J. ; Zhao L. L. ; Yu F. B. Controllable regulation of Ag 2 S quantum-dot-mediated protein nanoassemblies for imaging-guided synergistic PDT/PTT/chemotherapy against hypoxic tumor . Adv. Healthc. Mater. , 2023 , 12 ( 25 ), 2300752 . doi: 10.1002/adhm.202300752 http://dx.doi.org/10.1002/adhm.202300752
Dobson C. M. ; Šali A. ; Karplus M. Protein folding: a perspective from theory and experiment . Angew. Chem. Int. Ed. , 1998 , 37 ( 7 ), 868 - 893 . doi: 10.1002/(sici)1521-3773(19980420)37:7<868::aid-anie868>3.3.co;2-8 http://dx.doi.org/10.1002/(sici)1521-3773(19980420)37:7<868::aid-anie868>3.3.co;2-8
李逸佳 , 田瑞桢 , 徐家云 , 侯春喜 , 罗全 , 刘俊秋 . 蛋白质超分子聚合物及其应用 . 高分子学报 , 2022 , 53 ( 10 ), 1217 - 1238 . doi: 10.11777/j.issn1000-3304.2022.22161 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22161
Zhang X. X. ; Wang D. Y. ; Wu X. H. ; Zhao Y. ; Li X. ; Ma R. J. ; Huang F. ; Shi L. Q. " Spear and shield in one" nanochaperone enables protein to navigate multiple biological barriers for enhanced tumor synergistic therapy . Biomater. Sci. , 2022 , 10 ( 13 ), 3575 - 3584 . doi: 10.1039/d2bm00409g http://dx.doi.org/10.1039/d2bm00409g
Karas L. J. ; Wu C. H. ; Das R. ; Wu J. I. Hydrogen bond design principles . WIREs Comput. Mol. Sci. , 2020 , 10 ( 6 ), e 1477 . doi: 10.1002/wcms.1477 http://dx.doi.org/10.1002/wcms.1477
Liang K. ; Ng S. ; Lee F. ; Lim J. ; Chung J. E. ; Lee S. S. ; Kurisawa M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels . Acta Biomater. , 2016 , 33 , 142 - 152 . doi: 10.1016/j.actbio.2016.01.011 http://dx.doi.org/10.1016/j.actbio.2016.01.011
Mogaki R. ; Hashim P. K. ; Okuro K. ; Aida T. Guanidinium-based "molecular glues" for modulation of biomolecular functions . Chem. Soc. Rev. , 2017 , 46 ( 21 ), 6480 - 6491 . doi: 10.1039/c7cs00647k http://dx.doi.org/10.1039/c7cs00647k
Xu J. ; Wang H. ; Xu L. G. ; Chao Y. ; Wang C. Y. ; Han X. ; Dong Z. L. ; Chang H. ; Peng R. ; Cheng Y. Y. ; Liu Z. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy . Biomaterials , 2019 , 207 , 1 - 9 . doi: 10.1016/j.biomaterials.2019.03.037 http://dx.doi.org/10.1016/j.biomaterials.2019.03.037
Zhu Y. ; Zheng W. ; Wang W. ; Yang H. B. When polymerization meets coordination-driven self-assembly: metallo-supramolecular polymers based on supramolecular coordination complexes . Chem. Soc. Rev. , 2021 , 50 ( 13 ), 7395 - 7417 . doi: 10.1039/d0cs00654h http://dx.doi.org/10.1039/d0cs00654h
Ren L. F. ; Lv J. ; Wang H. ; Cheng Y. Y. A coordinative dendrimer achieves excellent efficiency in cytosolic protein and peptide delivery . Angew. Chem. Int. Ed. , 2020 , 59 ( 12 ), 4711 - 4719 . doi: 10.1002/anie.201914970 http://dx.doi.org/10.1002/anie.201914970
Maeda T. ; Otsuka H. ; Takahara A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds . Prog. Polym. Sci. , 2009 , 34 ( 7 ), 581 - 604 . doi: 10.1016/j.progpolymsci.2009.03.001 http://dx.doi.org/10.1016/j.progpolymsci.2009.03.001
Zheng N. ; Xu Y. ; Zhao Q. ; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing . Chem. Rev. , 2021 , 121 ( 3 ), 1716 - 1745 . doi: 10.1021/acs.chemrev.0c00938 http://dx.doi.org/10.1021/acs.chemrev.0c00938
Jin Y. H. ; Yu C. ; Denman R. J. ; Zhang W. Recent advances in dynamic covalent chemistry . Chem. Soc. Rev. , 2013 , 42 ( 16 ), 6634 - 6654 . doi: 10.1039/c3cs60044k http://dx.doi.org/10.1039/c3cs60044k
Chakma P. ; Konkolewicz D. Dynamic covalent bonds in polymeric materials . Angew. Chem. Int. Ed. , 2019 , 58 ( 29 ), 9682 - 9695 . doi: 10.1002/anie.201813525 http://dx.doi.org/10.1002/anie.201813525
Wang Y. P. ; Byrne J. D. ; Napier M. E. ; DeSimone J. M. Engineering nanomedicines using stimuli-responsive biomaterials . Adv. Drug Deliv. Rev. , 2012 , 64 ( 11 ), 1021 - 1030 . doi: 10.1016/j.addr.2012.01.003 http://dx.doi.org/10.1016/j.addr.2012.01.003
Mura S. ; Nicolas J. ; Couvreur P. Stimuli-responsive nanocarriers for drug delivery . Nat. Mater. , 2013 , 12 ( 11 ), 991 - 1003 . doi: 10.1038/nmat3776 http://dx.doi.org/10.1038/nmat3776
Xin X. Q. ; Zhang Z. X. ; Zhang X. C. ; Chen J. ; Lin X. ; Sun P. H. ; Liu X. W. Bioresponsive nanomedicines based on dynamic covalent bonds . Nanoscale , 2021 , 13 ( 27 ), 11712 - 11733 . doi: 10.1039/d1nr02836g http://dx.doi.org/10.1039/d1nr02836g
Zhou N. E. ; Kay C. M. ; Hodges R. S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil . Biochemistry , 1993 , 32 ( 12 ), 3178 - 3187 . doi: 10.1021/bi00063a033 http://dx.doi.org/10.1021/bi00063a033
Cheng R. ; Feng F. ; Meng F. H. ; Deng C. ; Feijen J. ; Zhong Z. Y. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery . J. Control. Release , 2011 , 152 ( 1 ), 2 - 12 . doi: 10.1016/j.jconrel.2011.01.030 http://dx.doi.org/10.1016/j.jconrel.2011.01.030
Lv H. H. ; Zhen C. X. ; Liu J. Y. ; Yang P. F. ; Hu L. J. ; Shang P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy . Oxid. Med. Cell. Longev. , 2019 , 2019 ( 1 ), 3150145 . doi: 10.1155/2019/3150145 http://dx.doi.org/10.1155/2019/3150145
Hansen-Bruhn M. ; De Ávila B. E. ; Beltrán-Gastélum M. ; Zhao J. ; Ramírez-Herrera D. E. ; Angsantikul P. ; Vesterager Gothelf K. ; Zhang L. F. ; Wang J. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors . Angew. Chem. Int. Ed. , 2018 , 57 ( 10 ), 2657 - 2661 . doi: 10.1002/anie.201713082 http://dx.doi.org/10.1002/anie.201713082
Li D. X. ; Li X. ; Yang F. ; Yuan R. ; Xiang Y. Targeted delivery of DNA framework-encapsulated native therapeutic protein into cancer cells . ACS Appl. Mater. Interfaces , 2020 , 12 ( 49 ), 54489 - 54496 . doi: 10.1021/acsami.0c17887 http://dx.doi.org/10.1021/acsami.0c17887
Zhang S. ; Tan E. C. ; Wang R. J. ; Gao P. ; Wang H. ; Cheng Y. Y. Robust reversible cross-linking strategy for intracellular protein delivery with excellent serum tolerance . Nano Lett. , 2022 , 22 ( 20 ), 8233 - 8240 . doi: 10.1021/acs.nanolett.2c02948 http://dx.doi.org/10.1021/acs.nanolett.2c02948
Chen X. H. ; Zheng Q. Z. ; Cai W. Q. ; Sheng J. H. ; Wang M. Biodegradable hydrogen-bonded organic framework for cytosolic protein delivery . ACS Appl. Mater. Interfaces , 2023 , 15 ( 47 ), 54346 - 54352 . doi: 10.1021/acsami.3c14450 http://dx.doi.org/10.1021/acsami.3c14450
Xu H. P. ; Cao W. ; Zhang X. Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics . Acc. Chem. Res. , 2013 , 46 ( 7 ), 1647 - 1658 . doi: 10.1021/ar4000339 http://dx.doi.org/10.1021/ar4000339
Zhang W. ; Lin W. H. ; Pei Q. ; Hu X. L. ; Xie Z. G. ; Jing X. B. Redox-hypersensitive organic nanoparticles for selective treatment of cancer cells . Chem. Mater. , 2016 , 28 ( 12 ), 4440 - 4446 . doi: 10.1021/acs.chemmater.6b01641 http://dx.doi.org/10.1021/acs.chemmater.6b01641
Shao D. ; Li M. Q. ; Wang Z. ; Zheng X. ; Lao Y. H. ; Chang Z. M. ; Zhang F. ; Lu M. M. ; Yue J. ; Hu H. Z. ; Yan H. Z. ; Chen L. ; Dong W. F. ; Leong K. W. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery . Adv. Mater. , 2018 , 30 ( 29 ), 1801198 . doi: 10.1002/adma.201870209 http://dx.doi.org/10.1002/adma.201870209
Ren L. F. ; Jiang L. ; Ren Q. Y. ; Lv J. ; Zhu L. Y. ; Cheng Y. Y. A light-activated polymer with excellent serum tolerance for intracellular protein delivery . Chem. Sci. , 2023 , 14 ( 8 ), 2046 - 2053 . doi: 10.1039/d2sc05848k http://dx.doi.org/10.1039/d2sc05848k
Tian Z. F. ; Xu Y. ; Zhu Y. F. Aldehyde-functionalized dendritic mesoporous silica nanoparticles as potential nanocarriers for pH-responsive protein drug delivery . Mater. Sci. Eng. C , 2017 , 71 , 452 - 459 . doi: 10.1016/j.msec.2016.10.039 http://dx.doi.org/10.1016/j.msec.2016.10.039
Wu X. J. ; Wu S. Q. ; Yang L. ; Han J. H. ; Han S. F. Cytosolic delivery of proteins mediated by aldehyde-displaying silica nanoparticles with pH-responsive characteristics . J. Mater. Chem. , 2012 , 22 ( 33 ), 17121 - 17127 . doi: 10.1039/c2jm33434h http://dx.doi.org/10.1039/c2jm33434h
Yang H. Y. ; Jang M. S. ; Li Y. ; Du J. M. ; Liu C. L. ; Lee J. H. ; Fu Y. pH-responsive dynamically cross-linked nanogels with effective endo-lysosomal escape for synergetic cancer therapy based on intracellular co -delivery of photosensitizers and proteins . Colloids Surf. B Biointerfaces , 2022 , 217 , 112638 . doi: 10.1016/j.colsurfb.2022.112638 http://dx.doi.org/10.1016/j.colsurfb.2022.112638
Matysiak B. M. ; Santiago G. M. ; Otto S. Teaching an old compound new tricks: reversible transamidation in maleamic acids . Chem. , 2022 , 28 ( 40 ), e 202201043 . doi: 10.1002/chem.202201043 http://dx.doi.org/10.1002/chem.202201043
Kang S. ; Kim Y. ; Song Y. ; Choi J. U. ; Park E. ; Choi W. ; Park J. ; Lee Y. Comparison of pH-sensitive degradability of maleic acid amide derivatives . Bioorg. Med. Chem. Lett. , 2014 , 24 ( 10 ), 2364 - 2367 . doi: 10.1016/j.bmcl.2014.03.057 http://dx.doi.org/10.1016/j.bmcl.2014.03.057
Su S. ; Wang Y. Y. ; Du F. S. ; Lu H. ; Li Z. C. Dynamic covalent bond-assisted programmed and traceless protein release: high loading nanogel for systemic and cytosolic delivery . Adv. Funct. Mater. , 2018 , 28 ( 48 ), 1805287 . doi: 10.1002/adfm.201805287 http://dx.doi.org/10.1002/adfm.201805287
Zhang X. C. ; Feng L. Z. ; Dong Z. L. ; Xin X. Q. ; Yang Z. J. ; Deng D. S. ; Wagner E. ; Liu Z. ; Liu X. W. Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy . Int. J. Pharm. , 2020 , 582 , 119321 . doi: 10.1016/j.ijpharm.2020.119321 http://dx.doi.org/10.1016/j.ijpharm.2020.119321
Ma Y. C. ; Zhao Y. Y. ; Bejjanki N. K. ; Tang X. F. ; Jiang W. ; Dou J. X. ; Khan M. I. ; Wang Q. ; Xia J. X. ; Liu H. ; You Y. Z. ; Zhang G. Q. ; Wang Y. C. ; Wang J. Nanoclustered cascaded enzymes for targeted tumor starvation and deoxygenation-activated chemotherapy without systemic toxicity . ACS Nano , 2019 , 13 ( 8 ), 8890 - 8902 . doi: 10.1021/acsnano.9b02466 http://dx.doi.org/10.1021/acsnano.9b02466
Gopinath R. ; Haque S. J. ; Patel B. K. Tetrabutylammonium tribromide (TBATB) as an efficient generator of HBr for an efficient chemoselective reagent for acetalization of carbonyl compounds . J. Org. Chem. , 2002 , 67 ( 16 ), 5842 - 5845 . doi: 10.1021/jo025701o http://dx.doi.org/10.1021/jo025701o
Krompiec S. ; Penkala M. ; Szczubiałka K. ; Kowalska E. Transition metal compounds and complexes as catalysts in synthesis of acetals and orthoesters: theoretical, mechanistic and practical aspects . Coord. Chem. Rev. , 2012 , 256 ( 17-18 ), 2057 - 2095 . doi: 10.1016/j.ccr.2012.05.006 http://dx.doi.org/10.1016/j.ccr.2012.05.006
Lu L. ; Zou Y. ; Yang W. J. ; Meng F. H. ; Deng C. ; Cheng R. ; Zhong Z. Y. Anisamide-decorated pH-sensitive degradable chimaeric polymersomes mediate potent and targeted protein delivery to lung cancer cells . Biomacromolecules , 2015 , 16 ( 6 ), 1726 - 1735 . doi: 10.1021/acs.biomac.5b00193 http://dx.doi.org/10.1021/acs.biomac.5b00193
Schötz S. ; Goerisch B. B. ; Mavroskoufis A. ; Dimde M. ; Quaas E. ; Achazi K. ; Haag R. pH-degradable polyglycerol-based nanogels for intracellular protein delivery . ACS Appl. Nano Mater. , 2023 , 6 ( 17 ), 15959 - 15968 . doi: 10.1021/acsanm.3c02824 http://dx.doi.org/10.1021/acsanm.3c02824
Liu B. ; Thayumanavan S. Mechanistic investigation on oxidative degradation of ROS-responsive thioacetal/thioketal moieties and their implications . Cell Rep. Phys. Sci. , 2020 , 1 , 100271 . doi: 10.1016/j.xcrp.2020.100271 http://dx.doi.org/10.1016/j.xcrp.2020.100271
司星辉 , 宋万通 , 陈学思 . 免疫治疗药物传输材料 . 高分子学报 , 2023 , 54 ( 6 ), 837 - 852 . doi: 10.11777/j.issn1000-3304.2022.22401 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22401
Li X. ; Zhou Q. H. ; Japir A. A. M. M. ; Dutta D. ; Lu N. N. ; Ge Z. S. Protein-delivering nano complexes with Fenton reaction-triggered cargo release to boost cancer immunotherapy . ACS Nano , 2022 , 16 ( 9 ), 14982 - 14999 . doi: 10.1021/acsnano.2c06026 http://dx.doi.org/10.1021/acsnano.2c06026
Hui H. ; Jang M. S. ; Liu C. L. ; Fu Q. ; Fu Y. ; Lee J. H. ; Yang H. Y. Near-infrared light-activated smart nanogels for remotely controlled cytochrome c release and photodynamic therapy . Eur. Polym. J. , 2024 , 210 , 112955 . doi: 10.1016/j.eurpolymj.2024.112955 http://dx.doi.org/10.1016/j.eurpolymj.2024.112955
António J. P. M. ; Russo R. ; Carvalho C. P. ; Cal P. M. S. D. ; Gois P. M. P. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates . Chem. Soc. Rev. , 2019 , 48 ( 13 ), 3513 - 3536 . doi: 10.1039/c9cs00184k http://dx.doi.org/10.1039/c9cs00184k
Stubelius A. ; Lee S. ; Almutairi A. The chemistry of boronic acids in nanomaterials for drug delivery . Acc. Chem. Res. , 2019 , 52 ( 11 ), 3108 - 3119 . doi: 10.1021/acs.accounts.9b00292 http://dx.doi.org/10.1021/acs.accounts.9b00292
陈华 , 崔力允 , 李圆凤 , 刘勇 , 马如江 , 史林启 . 苯硼酸功能化聚合物纳米载体用于蛋白质药物胞内递送 . 高分子学报 , 2023 , 54 ( 4 ), 451 - 466 . doi: 10.11777/j.issn1000-3304.2022.22384 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22384
Lee S. Y. ; Yang M. Y. ; Seo J. H. ; Jeong D. I. ; Hwang C. ; Kim H. J. ; Lee J. M. ; Lee K. J. ; Park J. ; Cho H. J. Serially pH-modulated hydrogels based on boronate ester and polydopamine linkages for local cancer therapy . ACS Appl. Mater. Interfaces , 2021 , 13 ( 2 ), 2189 - 2203 . doi: 10.1021/acsami.0c16199 http://dx.doi.org/10.1021/acsami.0c16199
Kim S. ; Lee J. ; Im S. ; Kim W. J. Injectable immunogel based on polymerized phenylboronic acid and mannan for cancer immunotherapy . J. Control. Release , 2022 , 345 , 138 - 146 . doi: 10.1016/j.jconrel.2022.03.009 http://dx.doi.org/10.1016/j.jconrel.2022.03.009
Huang Q. ; Wang L. ; Yu H. J. ; Ur-Rahman K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy . J. Control. Release , 2019 , 305 , 50 - 64 . doi: 10.1016/j.jconrel.2019.05.029 http://dx.doi.org/10.1016/j.jconrel.2019.05.029
Zhou W. Y. ; Duan Z. G. ; Zhao J. ; Fu R. Z. ; Zhu C. H. ; Fan D. D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing . Bioact. Mater. , 2022 , 17 , 1 - 17 . doi: 10.1016/j.bioactmat.2022.01.004 http://dx.doi.org/10.1016/j.bioactmat.2022.01.004
Huang S. W. ; Yeh F. C. ; Ji Y. R. ; Su Y. F. ; Su Y. S. ; Chiang M. H. ; Tzeng S. C. ; Fu C. Y. ; Cheng A. ; Wang Y. C. ; Lee Y. T. Chitosan-based hydrogels to treat hydrofluoric acid burns and prevent infection . Drug Deliv. Transl. Res. , 2021 , 11 ( 4 ), 1532 - 1544 . doi: 10.1007/s13346-021-01007-3 http://dx.doi.org/10.1007/s13346-021-01007-3
Li R. W. ; Yan J. T. ; Feng B. ; Sun M. ; Ding C. F. ; Shen H. ; Zhu J. H. ; Yu S. N. Ultrasensitive detection of multidrug-resistant bacteria based on boric acid-functionalized fluorescent MOF@COF . ACS Appl. Mater. Interfaces , 2023 , 15 ( 15 ), 18663 - 18671 . doi: 10.1021/acsami.3c00632 http://dx.doi.org/10.1021/acsami.3c00632
Liu S. N. ; Meng J. H. ; Cui L. Y. ; Chen H. ; Shi L. Q. ; Ma R. J. A dynamic covalent bonding-based nanoplatform for intracellular co -delivery of protein drugs and chemotherapeutics with enhanced anti-cancer effect . Chinese J. Polym. Sci. , 2024 , 42 ( 5 ), 559 - 569 . doi: 10.1007/s10118-024-3090-z http://dx.doi.org/10.1007/s10118-024-3090-z
Yang Q. ; Liu N. Y. ; Zhao Z. Y. ; Liu X. ; Yin L. C. Dynamically crosslinked nanocapsules for the efficient and serum-resistant cytosolic protein delivery . Nano Res. , 2024 , 17 ( 3 ), 1760 - 1771 . doi: 10.1007/s12274-023-5978-2 http://dx.doi.org/10.1007/s12274-023-5978-2
Xu J. K. ; Li Z. ; Fan Q. Q. ; Lv J. ; Li Y. W. ; Cheng Y. Y. Dynamic polymer amphiphiles for efficient intracellular and in vivo protein delivery . Adv. Mater. , 2021 , 33 ( 52 ), 2104355 . doi: 10.1002/adma.202104355 http://dx.doi.org/10.1002/adma.202104355
Liu X. Y. ; Li C. ; Lv J. ; Huang F. ; An Y. L. ; Shi L. Q. ; Ma R. J. Glucose and H 2 O 2 dual-responsive polymeric micelles for the self-regulated release of insulin . ACS Appl. Bio Mater. , 2020 , 3 ( 3 ), 1598 - 1606 . doi: 10.1021/acsabm.9b01185 http://dx.doi.org/10.1021/acsabm.9b01185
Liu Y. H. ; Zhang J. ; Li G. Y. ; Li M. L. ; Xu S. H. ; Liu H. L. Shell-crosslinked micelles with neighborhood effect and pH/GSH sensitivity for co -loading of protein and polyphenol drugs . Colloids Surf. A Physicochem. Eng. Aspects , 2023 , 679 , 132512 . doi: 10.1016/j.colsurfa.2023.132512 http://dx.doi.org/10.1016/j.colsurfa.2023.132512
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构