浏览全部资源
扫码关注微信
1.汕头大学,化学化工学院 广东省有序结构材料的制备与应用重点实验室,汕头 515063
2.汕头大学,理学院,汕头 515063
E-mail: wuqh@stu.edu.cn
收稿日期:2025-02-19,
录用日期:2025-04-03,
网络出版日期:2025-04-28,
移动端阅览
张工亚, 陈鸿, 李冬燕, 余紫琪, 陈润婉, 武庆贺. 基于多氟聚合物的高性能三元有机太阳能电池. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25042
Zhang, G. Y.; Chen, H.; Li, D. Y.; Yu, Z. Q.; Chen, R. W.; Wu, Q. H. High-performance ternary organic solar cells based on multifluorinated polymer. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25042
张工亚, 陈鸿, 李冬燕, 余紫琪, 陈润婉, 武庆贺. 基于多氟聚合物的高性能三元有机太阳能电池. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25042 DOI: CSTR: 32057.14.GFZXB.2025.7394.
Zhang, G. Y.; Chen, H.; Li, D. Y.; Yu, Z. Q.; Chen, R. W.; Wu, Q. H. High-performance ternary organic solar cells based on multifluorinated polymer. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25042 DOI: CSTR: 32057.14.GFZXB.2025.7394.
三元有机太阳能电池有利于调控光谱吸收、薄膜形貌和降低能量损失,从而实现光电转换效率的提升,然而如何选择第三组分调控光伏器件的性能仍面临挑战. 多氟聚合物结晶性高、与多氟非富勒烯受体材料的相容性好,我们把多氟聚合物PFNT-Cl作为第三组分加入到PNTB-HD:N3体系中,20 wt%的加入量可以提高光伏器件的开路电压、短路电流和填充因子,使光电转换效率从17.77%提高到18.45%,并展现更优的器件稳定性. 研究表明多氟聚合物的加入提高了共混薄膜的载流子迁移率,导致纤维状薄膜形貌的形成. 把多氟聚合物PFNT-Cl引入到其它经典体系 PM6:eC9和D18:L8-BO中,也分别把光电转换效率从17.26%、18.95%提到17.93%和19.59%. 该研究揭示将多氟聚合物作为第三组分是制备高性能三元有机太阳电池的高效策略.
The ternary organic solar cells are employed to regulate absorption
film morphology and energy loss
thereby improving the photoelectric conversion efficiency. However
the challenge remains in selecting the third component. High crystallinity of the multifluorinated polymer and good compatibility with the morphology of fluorinated non-fullerene acceptor enable the utilization of the fluorinated polymer PFNT-Cl as the third component added into the PNTB-HD:N3 system. An addition of 20 wt% can increase the open-circuit voltage
short-circuit current and fill factor
increasing the photoelectric conversion efficiency from 17.77% to 18.45% and demonstrating better device stability. The research reveals that the addition of mulfifluorinated polymer improves the charge carrier mobility of the blend films
induces the formation of fibrous film morphology. By introducing the multifluorinated polymer PFNT-Cl into other classic systems
such as PM6:eC9 and D18:L8-BO
the photovoltaic conversion efficiencies have been respectively increased from 17.26% to 17.93% and from 18.95% to 19.59%. This work highlights the use of multifluorinated polymer as the third component as an efficient strategy for preparing high-performance ternary organic solar cells.
Hu H. W. ; Liu S. ; Xu J. Y. ; Ma R. J. ; Peng Z. X. ; Pena T. A. D. ; Cui Y. J. ; Liang W. T. ; Zhou X. L. ; Luo S. W. ; Yu H. ; Li M. J. ; Wu J. Y. ; Chen S. S. ; Li G. ; Chen Y. W. Over 19% efficiency organic solar cells enabled by manipulating the intermolecular interactions through side chain fluorine functionalization . Angew. Chem. Int. Ed. , 2024 , 63 ( 15 ), e 202400086 . doi: 10.1002/anie.202400086 http://dx.doi.org/10.1002/anie.202400086
Chen S. H. ; Zhu S. T. ; Hong L. ; Deng W. Y. ; Zhang Y. ; Fu Y. ; Zhong Z. Y. ; Dong M. H. ; Liu C. C. ; Lu X. H. ; Zhang K. ; Huang F. Binary organic solar cells with over 19% efficiency and enhanced morphology stability enabled by asymmetric acceptors . Angew. Chem. Int. Ed. , 2024 , 63 ( 12 ), e 202318756 . doi: 10.1002/anie.202318756 http://dx.doi.org/10.1002/anie.202318756
Ren J. Z. ; Zhang S. Q. ; Chen Z. H. ; Zhang T. ; Qiao J. W. ; Wang J. W. ; Ma L. J. ; Xiao Y. ; Li Z. ; Wang J. Q. ; Hao X. T. ; Hou J. H. Optimizing molecular packing via steric hindrance for reducing non-radiative recombination in organic solar cells . Angew. Chem. Int. Ed. , 2024 , 63 ( 30 ), e 202406153 . doi: 10.1002/anie.202406153 http://dx.doi.org/10.1002/anie.202406153
Ding P. F. ; Yang D. B. ; Yang S. C. ; Ge Z. Y. Stability of organic solar cells: Toward commercial applications . Chem. Soc. Rev. , 2024 , 53 ( 5 ), 2350 - 2387 . doi: 10.1039/d3cs00492a http://dx.doi.org/10.1039/d3cs00492a
Zhang Y. ; Deng W. Y. ; Petoukhoff C. E. ; Xia X. X. ; Lang Y. W. ; Xia H. ; Tang H. ; Chandran H. T. ; Mahadevan S. ; Liu K. ; Fong P. W. K. ; Luo Y. M. ; Wu J. Y. ; Tsang S. W. ; Laquai F. ; Wu H. B. ; Lu X. H. ; Yang Y. ; Li G. Achieving 19.4% organic solar cell via an in situ forma tion of p-i-n structure with built-in interpenetrating network . Joule , 2024 , 8 ( 2 ), 509 - 526 . doi: 10.1016/j.joule.2023.12.009 http://dx.doi.org/10.1016/j.joule.2023.12.009
Liu K. R. ; Jiang Y. Y. ; Ran G. L. ; Liu F. ; Zhang W. K. ; Zhu X. Z. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors . Joule , 2024 , 8 ( 3 ), 835 - 851 . doi: 10.1016/j.joule.2024.01.005 http://dx.doi.org/10.1016/j.joule.2024.01.005
Chen J. M. ; Wang H. J. ; Mo S. M. ; Chen H. ; He X. Y. ; Su M. B. ; Li D. Y. ; Xiao Y. H. ; Wang Z. Q. ; Ye F. W. ; Li M. D. ; Dang L. ; Huang X. C. ; Li C. Z. ; He F. ; Wu Q. H. Intense intramolecular charge transfer endows cyanated polymer with broad absorption, intensified light-harvesting, long-lived exciton, and superior photovoltaic property . CCS Chem. , 2024 , 6 ( 9 ), 2318 - 2332 . doi: 10.31635/ccschem.024.202303457 http://dx.doi.org/10.31635/ccschem.024.202303457
Han P. W. ; Lin M. ; Jiang Q. J. ; Ning H. J. ; Su M. B. ; Dang L. ; He F. ; Wu Q. H. Ladder-type thienoacenaphthopyrazine-based molecules: synthesis, properties, and application to construct high-performance polymer for organic solar cells . CCS Chem. , 2023 , 5 ( 6 ), 1318 - 1331 . doi: 10.31635/ccschem.022.202201839 http://dx.doi.org/10.31635/ccschem.022.202201839
Xin J. M. ; He Z. M. ; Liu Z. F. ; Liu X. P. ; Zhu H. Y. ; Zhang Z. ; Song C. P. ; Yin X. P. ; Liang Q. J. ; Liu J. G. Recent advances in polymorphism of organic solar cells . Small , 2025 , 21 ( 6 ), 2409411 . doi: 10.1002/smll.202409411 http://dx.doi.org/10.1002/smll.202409411
Xin J. M. ; Zhao C. ; Geng Z. Q. ; Xue W. Y. ; Chen Z. Y. ; Song C. P. ; Yan H. ; Liang Q. J. ; Miao Z. C. ; Ma W. ; Liu J. G. Elucidate the thermal degradation mechanism of Y6-based organic solar cells by establishing structure-property correlation . Adv. Energy Mater. , 2024 , 14 ( 30 ), 2401433 . doi: 10.1002/aenm.202401433 http://dx.doi.org/10.1002/aenm.202401433
An M. W. ; Liu Q. ; Jeong S. Y. ; Liu B. ; Huang E. M. ; Liang Q. M. ; Li H. N. ; Zhang G. Y. ; Woo H. Y. ; Niu L. ; Guo X. G. ; Sun H. L. A fluorinated imide-functionalized arene enabling a wide bandgap polymer donor for record-efficiency all-polymer solar cells . Angew. Chem. Int. Ed , 2024 , 63 ( 47 ), e 202410498 . doi: 10.1002/anie.202410498 http://dx.doi.org/10.1002/anie.202410498
Bai Q. Q. ; Cheng Y. X. ; Wang W. ; Chen J. W. ; Sun H. L. Polythiophene and its derivatives for all-polymer solar cells . J. Mater. Chem. A , 2024 , 12 ( 27 ), 16251 - 16267 . doi: 10.1039/d4ta02245a http://dx.doi.org/10.1039/d4ta02245a
Bai Q. Q. ; Liang Q. M. ; Liu Q. ; Liu B. ; Guo X. G. ; Niu L. ; Sun H. L. PY-IT, an excellent polymer acceptor . Chin. J. Chem. , 2023 , 41 ( 24 ), 3714 - 3728 . doi: 10.1002/cjoc.202300404 http://dx.doi.org/10.1002/cjoc.202300404
Liang Q. J. ; Duan M. Z. ; Geng Z. Q. ; Zhang M. ; Xu W. Z. ; Geng H. J. ; He Z. M. ; Liu J. G. Regulation of molecular orientation in organic solar cells . Chem. Eng. J. , 2024 , 488 , 150783 . doi: 10.1016/j.cej.2024.150783 http://dx.doi.org/10.1016/j.cej.2024.150783
Chen C. ; Wang L. ; Xia W. Y. ; Qiu K. ; Guo C. H. ; Gan Z. R. ; Zhou J. ; Sun Y. D. ; Liu D. ; Li W. ; Wang T. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20 . Nat. Commun. , 2024 , 15 ( 1 ), 6865 . doi: 10.1038/s41467-024-51359-w http://dx.doi.org/10.1038/s41467-024-51359-w
Chen Z. Y. ; Ge J. F. ; Song W. ; Tong X. Y. ; Liu H. ; Yu X. L. ; Li J. ; Shi J. Y. ; Xie L. ; Han C. C. ; Liu Q. ; Ge Z. Y. 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement . Adv. Mater. , 2024 , 36 ( 33 ), 2406690 . doi: 10.1002/adma.202406690 http://dx.doi.org/10.1002/adma.202406690
Fu J. H. ; Yang Q. G. ; Huang P. H. ; Chung S. ; Cho K. ; Kan Z. P. ; Liu H. ; Lu X. H. ; Lang Y. W. ; Lai H. J. ; He F. ; Fong P. W. K. ; Lu S. R. ; Yang Y. ; Xiao Z. Y. ; Li G. Rational molecular and device design enables organic solar cells approaching 20% efficiency . Nat. Commun. , 2024 , 15 ( 1 ), 1830 . doi: 10.1038/s41467-024-46022-3 http://dx.doi.org/10.1038/s41467-024-46022-3
Jiang Y. Y. ; Sun S. M. ; Xu R. J. ; Liu F. ; Miao X. D. ; Ran G. L. ; Liu K. R. ; Yi Y. P. ; Zhang W. K. ; Zhu X. Z. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells . Nat. Energy , 2024 , 9 ( 8 ), 975 - 986 . doi: 10.1038/s41560-024-01557-z http://dx.doi.org/10.1038/s41560-024-01557-z
Guan S. T. ; Li Y. K. ; Xu C. ; Yin N. ; Xu C. R. ; Wang C. X. ; Wang M. T. ; Xu Y. X. ; Chen Q. ; Wang D. W. ; Zuo L. J. ; Chen H. Z. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20 . Adv. Mater. , 2024 , 36 ( 25 ), 2400342 . doi: 10.1002/adma.202400342 http://dx.doi.org/10.1002/adma.202400342
Sun Y. D. ; Wang L. ; Guo C. H. ; Xiao J. Y. ; Liu C. H. ; Chen C. ; Xia W. Y. ; Gan Z. R. ; Cheng J. C. ; Zhou J. P. ; Chen Z. H. ; Zhou J. ; Liu D. ; Wang T. ; Li W. π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency . J. Am. Chem. Soc. , 2024 , 146 ( 17 ), 12011 - 12019 . doi: 10.1021/jacs.4c01503 http://dx.doi.org/10.1021/jacs.4c01503
Zhu L. ; Zhang M. ; Zhou G. Q. ; Wang Z. Y. ; Zhong W. K. ; Zhuang J. X. ; Zhou Z. C. ; Gao X. Y. ; Kan L. X. ; Hao B. N. ; Han F. ; Zeng R. ; Xue X. N. ; Xu S. J. ; Jing H. ; Xiao B. ; Zhu H. M. ; Zhang Y. M. ; Liu F. Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management . Joule , 2024 , 8 ( 11 ), 3153 - 3168 . doi: 10.1016/j.joule.2024.08.001 http://dx.doi.org/10.1016/j.joule.2024.08.001
Ge Z. W. ; Qiao J. W. ; Li Y. ; Song J. L. ; Duan X. P. ; Fu Z. ; Hu H. X. ; Yang R. Q. ; Yin H. ; Hao X. T. ; Sun Y. M. Regulating electron-phonon coupling by solid additive for efficient organic solar cells . Angew. Chem. Int. Ed , 2025 , 64 ( 1 ), e 202413309 . doi: 10.1002/anie.202413309 http://dx.doi.org/10.1002/anie.202413309
Li H. J. ; Li Y. F. ; Dai X. J. ; Xu X. P. ; Peng Q. Ethanol processable inorganic-organic hybrid hole transporting layers enabled 20.12 % efficiency organic solar cells . Angew. Chem. Int. Ed. , 2025 , 64 ( 4 ), e 202416866 . doi: 10.1002/anie.202416866 http://dx.doi.org/10.1002/anie.202416866
Wei N. ; Chen J. N. ; Cheng Y. T. ; Bian Z. Q. ; Liu W. L. ; Song H. M. ; Guo Y. W. ; Zhang W. K. ; Liu Y. H. ; Lu H. ; Zhou J. J. ; Bo Z. S. Constructing multiscale fibrous morphology to achieve 20% efficiency organic solar cells by mixing high and low molecular weight D18 . Adv. Mater. , 2024 , 36 ( 41 ), 2408934 . doi: 10.1002/adma.202408934 http://dx.doi.org/10.1002/adma.202408934
Zhu L. ; Zhang M. ; Zhou G. Q. ; Wang Z. Y. ; Zhong W. K. ; Zhuang J. X. ; Zhou Z. C. ; Gao X. Y. ; Kan L. X. ; Hao B. N. ; Han F. ; Zeng R. ; Xue X. N. ; Xu S. J. ; Jing H. ; Xiao B. ; Zhu H. M. ; Zhang Y. M. ; Liu F. Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management . Joule , 2024 , 8 ( 11 ), 3153 - 3168 . doi: 10.1016/j.joule.2024.08.001 http://dx.doi.org/10.1016/j.joule.2024.08.001
Wang H. J. ; Mo S. M. ; Li D. Y. ; Wu Q. H. Recent advances of imide-functionalized polymer donors for non-fullerene solar cells . Chin. J. Chem. , 2024 , 42 ( 15 ), 1759 - 1780 . doi: 10.1002/cjoc.202300765 http://dx.doi.org/10.1002/cjoc.202300765
Liu J. G. ; Liu X. P. ; Xin J. M. ; Zhang Y. T. ; Wen L. Q. ; Liang Q. J. ; Miao Z. C. Dual function of the third component in ternary organic solar cells: broaden the spectrum and optimize the morphology . Small , 2024 , 20 ( 24 ), 2308863 . doi: 10.1002/smll.202308863 http://dx.doi.org/10.1002/smll.202308863
Sun S. X. ; Tan C. L. ; Zhang Z. J. ; Zhou H. ; Xu W. J. ; Xu Y. J. ; Du X. Y. ; Jeong S. Y. ; Woo H. Y. ; Zhang F. J. ; Zhang C. ; Sun Q. Q. Highly efficient organic solar cells with the highly crystalline third component as a morphology regulator . Small , 2024 , 20 ( 44 ), 2404734 . doi: 10.1002/smll.202404734 http://dx.doi.org/10.1002/smll.202404734
Li Y. X. ; Ren J. Q. ; Liu S. J. ; Zhao B. F. ; Liang Z. Z. ; Jee M. H. ; Qin H. M. ; Su W. Y. ; Woo H. Y. ; Gao C. Tailoring the molecular planarity of perylene diimide-based third component toward efficient ternary organic solar cells . Small , 2024 , 20 ( 33 ), 2401176 . doi: 10.1002/smll.202401176 http://dx.doi.org/10.1002/smll.202401176
He Z. L. ; Zhang Y. ; Lin Y. ; Li S. Y. ; Zhang S. M. ; Xue Z. Y. ; Hao Z. ; Tang Z. ; Zhong H. L. Wide-bandgap polymers with a C(sp 3 )-F polyfluoride backbone enable high-efficient ternary organic solar cells . Adv. Funct. Mater. , 2024 , 34 ( 25 ), 2315650 . doi: 10.1002/adfm.202315650 http://dx.doi.org/10.1002/adfm.202315650
Jiang X. L. ; Wang X. D. ; Wang Y. F. ; Ran G. L. ; Liu W. L. ; Lu H. ; Li H. X. ; Wei N. ; Wei Z. D. ; Lin Y. ; Ma Z. F. ; Liu Y. H. ; Zhang W. K. ; Xu X. J. ; Bo Z. S. Achieving 19.78%-efficiency organic solar cells by 2D/1A ternary blend strategy with reduced non-radiative energy loss . Adv. Funct. Mater. , 2024 , 34 ( 44 ), 2406744 . doi: 10.1002/adfm.202406744 http://dx.doi.org/10.1002/adfm.202406744
Li J. ; Zhang C. Y. ; Sun X. K. ; Wang H. ; Hu H. L. ; Wang K. ; Xiao M. J. Small molecule donor third component incorporating thieno [ 3 , 2 -b] thiophene unit enables 19.18% efficiency ternary organic solar cells with improved operational stability . Nano Energy , 2024, 125 , 109542 . doi: 10.1016/j.nanoen.2024.109542 http://dx.doi.org/10.1016/j.nanoen.2024.109542
Liang W. T. ; Zhu S. B. ; Sun K. B. ; Hai J. F. ; Cui Y. J. ; Gao C. L. ; Li W. Q. ; Wu Z. H. ; Zhang G. Y. ; Hu H. W. Achieving 19.72% efficiency in ternary organic solar cells through electrostatic potential-driven morphology control . Adv. Funct. Mater. , 2025 , 35 ( 7 ), 2415499 . doi: 10.1002/adfm.202415499 http://dx.doi.org/10.1002/adfm.202415499
Wang Y. F. ; Zhang S. Q. ; Wang J. Q. ; Ren J. Z. ; Qiao J. W. ; Chen Z. H. ; Yu Y. ; Hao X. T. ; Hou J. H. Optimizing phase separation and vertical distribution via molecular design and ternary strategy for organic solar cells with 19.5% efficiency . ACS Energy Lett. , 2024 , 9 ( 5 ), 2420 - 2427 . doi: 10.1021/acsenergylett.4c00723 http://dx.doi.org/10.1021/acsenergylett.4c00723
Yang L. J. ; Wu Y. ; Murugan P. ; Liu P. ; Qiu Z. Y. ; Peng Y. L. ; Li Z. F. ; Liu S. Y. Advancing integration of direct C-H arylation-derived star-shaped oligomers as second acceptors for ternary organic solar cells . ACS Appl. Mater. Interfaces , 2024 , 16 ( 20 ), 26348 - 26359 . doi: 10.1021/acsami.4c05564 http://dx.doi.org/10.1021/acsami.4c05564
Yang S. C. ; Chen Z. Y. ; Zhu J. T. ; Yang D. B. ; Wang H. Q. ; Ding P. F. ; Wu J. ; Yan P. Y. ; Xie L. ; Chen F. ; Wang Y. M. ; Zhang J. Q. ; Ge Z. Y. Guest acceptors with lower electrostatic potential in ternary organic solar cells for minimizing voltage losses . Adv. Mater. , 2024 , 36 ( 26 ), 2401789 . doi: 10.1002/adma.202401789 http://dx.doi.org/10.1002/adma.202401789
Zhang C. E. ; Zheng R. ; Huang H. ; Ran G. L. ; Liu W. X. ; Chen Q. L. ; Wu B. H. ; Wang H. ; Luo Z. H. ; Zhang W. K. ; Ma W. ; Bo Z. S. ; Yang C. L. High-performance ternary organic solar cells with enhanced luminescence efficiency and miscibility enabled by two compatible acceptors . Adv. Energy Mater. , 2024 , 14 ( 12 ), 2303756 . doi: 10.1002/aenm.202303756 http://dx.doi.org/10.1002/aenm.202303756
Zhang C. Y. ; Zhong X. Z. ; Sun X. K. ; Lv J. ; Ji Y. X. ; Fu J. H. ; Zhao C. Y. ; Yao Y. G. ; Zhang G. Y. ; Deng W. Y. ; Wang K. ; Li G. ; Hu H. L. Designing a novel wide bandgap small molecule guest for enhanced stability and morphology mediation in ternary organic solar cells with over 19.3% efficiency . Adv. Sci. , 2024 , 11 ( 23 ), 2401313 . doi: 10.1002/advs.202401313 http://dx.doi.org/10.1002/advs.202401313
Huang T. H. ; Zhang Y. ; Wang J. J. ; Cao Z. L. ; Geng S. ; Guan H. ; Wang D. J. ; Zhang Z. L. ; Liao Q. G. ; Zhang J. Dual-donor organic solar cells with 19.13% efficiency through optimized active layer crystallization behavior . Nano Energy , 2024 , 121 , 109226 . doi: 10.1016/j.nanoen.2023.109226 http://dx.doi.org/10.1016/j.nanoen.2023.109226
Cheng Y. J. ; Huang B. ; Huang X. X. ; Zhang L. F. ; Kim S. ; Xie Q. ; Liu C. ; Heumüller T. ; Liu Z. J. ; Zhang Y. H. ; Wu F. Y. ; Yang C. ; Brabec C. J. ; Chen Y. W. ; Chen L. Oligomer-assisted photoactive layers enable >18% efficiency of organic solar cells . Angew. Chem. Int. Ed. , 2022 , 61 ( 21 ), e 202200329 . doi: 10.1002/anie.202200329 http://dx.doi.org/10.1002/anie.202200329
Lu H. ; Li D. W. ; Ran G. L. ; Chen Y. N. ; Liu W. L. ; Wang H. ; Li S. ; Wang X. D. ; Zhang W. K. ; Liu Y. H. ; Xu X. J. ; Bo Z. S. Designing high-performance wide bandgap polymer donors by the synergistic effect of introducing carboxylate and fluoro substituents . ACS Energy Lett. , 2022 , 7 ( 11 ), 3927 - 3935 . doi: 10.1021/acsenergylett.2c02000 http://dx.doi.org/10.1021/acsenergylett.2c02000
Chen J. M. ; Li D. Y. ; Su M. B. ; Xiao Y. H. ; Chen H. ; Lin M. ; Qiao X. L. ; Dang L. ; Huang X. C. ; He F. ; Wu Q. H. A multifluorination strategy toward wide bandgap polymers for highly efficient organic solar cells . Angew. Chem. Int. Ed , 2023 , 62 ( 10 ), e 202215930 . doi: 10.1002/anie.202215930 http://dx.doi.org/10.1002/anie.202215930
Li D. Y. ; Wang H. J. ; Chen J. M. ; Wu Q. H. Fluorinated polymer donors for nonfullerene organic solar cells . Chemistry , 2024 , 30 ( 12 ), e 202303155 . doi: 10.1002/chem.202303155 http://dx.doi.org/10.1002/chem.202303155
He Z. L. ; Li S. Y. ; Zeng R. ; Lin Y. ; Zhang Y. ; Hao Z. ; Zhang S. M. ; Liu F. ; Tang Z. ; Zhong H. L. Binary organic solar cells with exceeding 19% efficiency via the synergy of polyfluoride polymer and fluorous solvent . Adv. Mater. , 2024 , 36 ( 30 ), 2404824 . doi: 10.1002/adma.202404824 http://dx.doi.org/10.1002/adma.202404824
Zhong H. L. ; Li C. Z. ; Carpenter J. ; Ade H. ; Jen A. K. Influence of regio- and chemoselectivity on the properties of fluoro-substituted thienothiophene and benzodithiophene copolymers . J. Am. Chem. Soc. , 2015 , 137 ( 24 ), 7616 - 7619 . doi: 10.1021/jacs.5b04209 http://dx.doi.org/10.1021/jacs.5b04209
Zhang M. J. ; Guo X. ; Ma W. ; Ade H. ; Hou J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance . Adv. Mater. , 2015 , 27 ( 31 ), 4655 - 4660 . doi: 10.1002/adma.201502110 http://dx.doi.org/10.1002/adma.201502110
Jiang Q. J. ; Han P. W. ; Ning H. J. ; Jiang J. Q. ; Chen H. ; Xiao Y. H. ; Ye C. R. ; Chen J. M. ; Lin M. ; He F. ; Huang X. C. ; Wu Q. H. Reducing steric hindrance around electronegative atom in polymer simultaneously enhanced efficiency and stability of organic solar cells . Nano Energy , 2022 , 101 , 107611 . doi: 10.1016/j.nanoen.2022.107611 http://dx.doi.org/10.1016/j.nanoen.2022.107611
Nilsson S. ; Bernasik A. ; Budkowski A. ; Moons E. Morphology and phase segregation of spin-casted films of polyfluorene/PCBM blends . Macromolecules , 2007 , 40 ( 23 ), 8291 - 8301 . doi: 10.1021/ma070712a http://dx.doi.org/10.1021/ma070712a
Su M. B. ; Lin M. ; Mo S. M. ; Chen J. M. ; Shen X. Y. ; Xiao Y. H. ; Wang M. J. ; Gao J. P. ; Dang L. ; Huang X. C. ; He F. ; Wu Q. H. Manipulating the alkyl chains of naphthodithiophene imide-based polymers to concurrently boost the efficiency and stability of organic solar cells . ACS Appl. Mater. Interfaces , 2023 , 15 ( 31 ), 37371 - 37380 . doi: 10.1021/acsami.3c05668 http://dx.doi.org/10.1021/acsami.3c05668
Zou W. T. ; Han C. Y. ; Zhang X. ; Qiao J. W. ; Yu J. F. ; Xu H. J. ; Gao H. H. ; Sun Y. N. ; Kan Y. Y. ; Hao X. T. ; Lu G. H. ; Yang Y. G. ; Gao K. A bithiazole-substituted donor for high-efficiency thick ternary organic solar cells via regulation of crystallinity and miscibility . Adv. Energy Mater. , 2023 , 13 ( 23 ), 2300784 . doi: 10.1002/aenm.202300784 http://dx.doi.org/10.1002/aenm.202300784
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构