浏览全部资源
扫码关注微信
青岛科技大学高分子科学与工程学院 青岛 266042
E-mail: dyx@qust.edu.cn
收稿日期:2025-02-26,
录用日期:2025-05-17,
网络出版日期:2025-05-31,
移动端阅览
李媛, 侯晓宇, 刘克, 黄鑫, 张建明, 段咏欣. 氨基硅烷偶联剂酰胺化改性纤维素纳米晶交联和补强聚二甲基硅氧烷的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25051
Li, Y.; Hou, X. Y.; Liu, K.; Huang, X.; Zhang, J. M.; Duan, Y. X. Amidation of carboxylated cellulose nanocrystals by silane coupling agents with amino groups for crosslinking and reinforcement of polydimethylsiloxane. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25051
李媛, 侯晓宇, 刘克, 黄鑫, 张建明, 段咏欣. 氨基硅烷偶联剂酰胺化改性纤维素纳米晶交联和补强聚二甲基硅氧烷的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25051 DOI: CSTR: 32057.14.GFZXB.2025.7418.
Li, Y.; Hou, X. Y.; Liu, K.; Huang, X.; Zhang, J. M.; Duan, Y. X. Amidation of carboxylated cellulose nanocrystals by silane coupling agents with amino groups for crosslinking and reinforcement of polydimethylsiloxane. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25051 DOI: CSTR: 32057.14.GFZXB.2025.7418.
将来源于自然界的纤维素纳米晶(CNCs)用于补强聚二甲基硅氧烷(PDMS),在提高其强度的同时,还能赋予复合材料一定的生物友好特性,契合可持续发展的趋势. 然而,CNCs与PDMS的相容性差,难以在基体中均匀分散,对CNCs进行硅烷化接枝改性,是提高其与PDMS间相容性的有效途径. 为避免硅烷偶联剂在接枝过程中的自聚合,本研究利用羧基化纤维素纳米晶(CCA)的羧基与3-氨丙基三乙氧基硅烷(KH550)所带氨基的酰胺化反应,制备了高硅烷氧基含量的纤维素纳米晶(CCK). CCK所带硅烷氧基可参与PDMS的交联反应,从而在两者之间形成共价相互作用,促进了CCK在PDMS中的均匀分散,使得CCK兼具补强和交联的双重作用,大幅提高了PDMS/CCK复合材料的力学性能. 此外,相比PDMS,PDMS/CCK具有更高的热稳定性.
Cellulose nanocrystals (CNCs) derived from natural sources were incorporated to reinforce polydimethylsiloxane (PDMS)
which not only enhanced the mechanical strength but also imparted a degree of biocompatibility to the composite
aligning with the principles of sustainable development. However
the poor compatibility between CNCs and PDMS makes it difficult for CNCs to disperse uniformly within the matrix. Silanization grafting modification of CNCs is an effective way to improve their compatibility with PDMS. To prevent the self-polymerization of silane coupling agents during the grafting process
this study utilized the carboxyl groups on carboxylated cellulose nanocrystals (CCA) to react with the amino groups of 3-aminopropyltriethoxysilane (KH550) via amidation
thereby producing cellulose nanocrystals with high silane groups (CCK). The silane groups on CCK can participate in the crosslinking reaction with PDMS
forming covalent interactions between the two
which promotes the uniform dispersion of CCK in the PDMS matrix. CCK exhibits dual functions of reinforcement and crosslinking
significantly improving the mechanical properties of PDMS/CCK composites. Furthermore
compared to pure PDMS
the PDMS/CCK composites demonstrate enhanced thermal stability.
Wolf M. P. ; Salieb-Beugelaar G. B. ; Hunziker P. PDMS with designer functionalities: properties, modifications strategies, and applications . Prog. Polym. Sci. , 2018 , 83 , 97 - 134 . doi: 10.1016/j.progpolymsci.2018.06.001 http://dx.doi.org/10.1016/j.progpolymsci.2018.06.001
Shen S. ; Xin Y. ; Niu Z. Q. ; Ma X. T. ; Zhang J. N. ; Hou X. ; Ma X. Y. Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties . Polym. Degrad. Stab. , 2022 , 203 , 110086 . doi: 10.1016/j.polymdegradstab.2022.110086 http://dx.doi.org/10.1016/j.polymdegradstab.2022.110086
Hussain M. ; Yasin S. ; Uddin A. ; Lu M. C. ; Qiang Z. ; Song Y. H. Nonlinear rheology of silicone rubber composites with tailored mechanical and dielectric properties . Compos. Commun. , 2022 , 35 , 101328 . doi: 10.1016/j.coco.2022.101328 http://dx.doi.org/10.1016/j.coco.2022.101328
Yang X. X. ; Jiang Z. Y. ; Liu H. ; Zhang H. B. ; Xu X. ; Shang S. B. ; Song Z. Q. Performance improvement of rosin-based room temperature vulcanized silicone rubber using nanofiller fumed silica . Polym. Degrad. Stab. , 2021 , 183 , 109422 . doi: 10.1016/j.polymdegradstab.2020.109422 http://dx.doi.org/10.1016/j.polymdegradstab.2020.109422
Ding K. D. ; Wang Y. ; Liu S. Z. ; Wang S. ; Mi J. G. Preparation of medical hydrophilic and antibacterial silicone rubber via surface modification . RSC Adv. , 2021 , 11 ( 63 ), 39950 - 39957 . doi: 10.1039/d1ra06260c http://dx.doi.org/10.1039/d1ra06260c
Song Y. Z. ; Yu J. H. ; Yu L. H. ; Alam F. E. ; Dai W. ; Li C. Y. ; Jiang N. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets . Mater. Des. , 2015 , 88 , 950 - 957 . doi: 10.1016/j.matdes.2015.09.064 http://dx.doi.org/10.1016/j.matdes.2015.09.064
Yi K. ; Fu S. Y. ; Zhang H. ; Zhang H. C. ; Wang Y. ; Huang Y. B. Cellulose nanofibrils/polydimethylsiloxane double-layer coating for fabrication of high barrier and excellent water- and oil-resistance paper . Prog. Org. Coat. , 2022 , 172 , 107123 . doi: 10.1016/j.porgcoat.2022.107123 http://dx.doi.org/10.1016/j.porgcoat.2022.107123
何文 ; 王波 ; 冯晗俊 ; 李桃 ; 肖睿 . 氨基修饰的聚二甲基硅氧烷复合膜的制备及其CO 2 /N 2 分离性能研究 . 化工新型材料 , 1 - 10 .
叶娟 , 祖兆基 , 林子谦 , 向洪平 , 章明秋 . 本征型自修复聚硅氧烷材料: 从单重动态交联网络到多重动态交联网络 . 高分子学报 , 2023 , 54 ( 7 ), 1028 - 1054 . doi: 10.11777/j.issn1000-3304.2022.22362 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22362
Han R. J. ; Li Y. L. ; Zhu Q. S. ; Niu K. M. Research on the preparation and thermal stability of silicone rubber composites: a review . Compos. Part C Open Access , 2022 , 8 , 100249 . doi: 10.1016/j.jcomc.2022.100249 http://dx.doi.org/10.1016/j.jcomc.2022.100249
卢鹏 , 张恒 , 汪勇 , 赵珂 , 杜校勇 , 甄琪 . 聚乳酸/聚二甲基硅氧烷超细纤维地膜的熔喷制备及其环境适应性 . 工程塑料应用 , 2024 , 52 ( 12 ), 14 - 25 .
Yang H. ; Gao Q. ; Xie Y. T. ; Chen Q. ; Ouyang C. F. ; Xu Y. M. ; Ji X. T. Effect of SiO 2 and TiO 2 nanoparticle on the properties of phenyl silicone rubber . J. Appl. Polym. Sci ., 2015, 132 ( 46 ), 42806 . doi: 10.1002/app.42806 http://dx.doi.org/10.1002/app.42806
Yang D. ; Zhang W. ; Jiang B. Z. ; Guo Y. Silicone rubber ablative composites improved with zirconium carbide or zirconia . Compos. Part A Appl. Sci. Manuf. , 2013 , 44 , 70 - 77 . doi: 10.1016/j.compositesa.2012.09.002 http://dx.doi.org/10.1016/j.compositesa.2012.09.002
Wu L. F. ; Wang X. M. ; Ning L. ; Han J. J. ; Wan Z. ; Lu M. Improvement of silicone rubber properties by addition of nano-SiO 2 particles . J. Appl. Biomater. Funct. Mater. , 2016 , 14 (Suppl 1 ), 11 - 14 . doi: 10.5301/jabfm.5000298 http://dx.doi.org/10.5301/jabfm.5000298
Sulym I. ; Goncharuk O. ; Sternik D. ; Terpilowski K. ; Derylo-Marczewska A. ; Borysenko M. V. ; Gun'ko V. M. Nanooxide/polymer composites with silica@PDMS and ceria-zirconia-silica@PDMS: textural, morphological, and hydrophilic/hydrophobic features . Nanoscale Res. Lett. , 2017 , 12 ( 1 ), 152 . doi: 10.1186/s11671-017-1935-x http://dx.doi.org/10.1186/s11671-017-1935-x
Xu J. ; Wu Z. H. ; Wu Q. Q. ; Kuang Y. S. Acetylated cellulose nanocrystals with high-crystallinity obtained by one-step reaction from the traditional acetylation of cellulose . Carbohydr. Polym. , 2020 , 229 , 115553 . doi: 10.1016/j.carbpol.2019.115553 http://dx.doi.org/10.1016/j.carbpol.2019.115553
Xiang H. S. ; Wang B. C. ; Zhong M. Q. ; Liu W. G. ; Yu D. H. ; Wang Y. L. ; Tam K. C. ; Zhou G. F. ; Zhang Z. Sustainable and versatile superhydrophobic cellulose nanocrystals . ACS Sustainable Chem. Eng. , 2022 , 10 ( 18 ), 5939 - 5948 . doi: 10.1021/acssuschemeng.2c00311 http://dx.doi.org/10.1021/acssuschemeng.2c00311
Rashid A. B. ; Hoque M. E. ; Kabir N. ; Rifat F. F. ; Ishrak H. ; Alqahtani A. ; Chowdhury M. E. H. Synthesis, properties, applications, and future prospective of cellulose nanocrystals . Polymers , 2023 , 15 ( 20 ), 4070 . doi: 10.3390/polym15204070 http://dx.doi.org/10.3390/polym15204070
Liu A. ; Wu H. L. ; Naeem A. ; Du Q. ; Ni B. ; Liu H. N. ; Li Z. ; Ming L. S. Cellulose nanocrystalline from biomass wastes: an overview of extraction, functionalization and applications in drug delivery . Int. J. Biol. Macromol. , 2023 , 241 , 124557 . doi: 10.1016/j.ijbiomac.2023.124557 http://dx.doi.org/10.1016/j.ijbiomac.2023.124557
Hasanin M. S. Cellulose-based biomaterials: chemistry and biomedical applications . Starch Stärke , 2022 , 74 ( 7-8 ), 2200060 . doi: 10.1002/star.202200060 http://dx.doi.org/10.1002/star.202200060
Jantachum P. ; Phinyocheep P. Compatibilization of cellulose nanocrystal-reinforced natural rubber nanocomposite by modified natural rubber . Polymers , 2024 , 16 ( 3 ), 363 . doi: 10.3390/polym16030363 http://dx.doi.org/10.3390/polym16030363
Sobhani S. ; Bastani S. ; Gedde U. W. ; Sari M. G. ; Ramezanzadeh B. Network formation and thermal stability enhancement in evolutionary crosslinked PDMS elastomers with sol-gel-formed silica nanoparticles: comparativeness between as-received and pre-hydrolyzed TEOS . Prog. Org. Coat. , 2017 , 113 , 117 - 125 . doi: 10.1016/j.porgcoat.2017.08.012 http://dx.doi.org/10.1016/j.porgcoat.2017.08.012
喻丽莎 , 康艳辉 , 何琛 , 周金平 . 氨基改性纤维素纳米晶体的自组装行为研究 . 高分子学报 , 2020 , 51 ( 8 ), 921 - 932 . doi: 10.11777/j.issn1000-3304.2020.20069 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20069
侯晓宇 , 胡洁 , 刘亚兵 , 段咏欣 . 羧基丁苯橡胶/羧基化纤维素纳米晶自愈合复合材料的制备及性能研究 . 高分子学报 , 2023 , 54 ( 7 ), 1074 - 1083 .
Mustapha S. ; Andou Y. Tailored higher performance silicone elastomer with nanofibrillated cellulose through acidic treatment . Polym. Compos. , 2021 , 42 ( 5 ), 2282 - 2292 . doi: 10.1002/pc.25976 http://dx.doi.org/10.1002/pc.25976
Dhali K. ; Daver F. ; Cass P. ; Adhikari B. Surface modification of the cellulose nanocrystals through vinyl silane grafting . Int. J. Biol. Macromol. , 2022 , 200 , 397 - 408 . doi: 10.1016/j.ijbiomac.2022.01.079 http://dx.doi.org/10.1016/j.ijbiomac.2022.01.079
Saini S. ; Belgacem M. N. ; Bras J. Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity . Mater. Sci. Eng. C , 2017 , 75 , 760 - 768 . doi: 10.1016/j.msec.2017.02.062 http://dx.doi.org/10.1016/j.msec.2017.02.062
Li X. W. ; Wu Q. ; Zheng M. H. ; Li Q. ; Wang S. Q. ; Zhang C. H. Mechanical, thermal properties and curing kinetics of liquid silicone rubber filled with cellulose nanocrystal . Cellulose , 2018 , 25 ( 1 ), 473 - 483 . doi: 10.1007/s10570-017-1581-6 http://dx.doi.org/10.1007/s10570-017-1581-6
Yang X. X. ; Li Z. S. ; Jiang Z. Y. ; Wang S. H. ; Liu H. ; Xu X. ; Wang D. ; Miao Y. C. ; Shang S. B. ; Song Z. Q. Mechanical reinforcement of room-temperature-vulcanized silicone rubber using modified cellulose nanocrystals as cross-linker and nanofiller . Carbohydr. Polym. , 2020 , 229 , 115509 . doi: 10.1016/j.carbpol.2019.115509 http://dx.doi.org/10.1016/j.carbpol.2019.115509
Hu J. ; Wu H. P. ; Liang S. ; Tian X. ; Liu K. ; Jiang M. ; Midhun Dominic C. D. ; Zhao H. Y. ; Duan Y. X. ; Zhang J. M. Effects of the surface chemical groups of cellulose nanocrystals on the vulcanization and mechanical properties of natural rubber/cellulose nanocrystals nanocomposites . Int. J. Biol. Macromol. , 2023 , 230 , 123168 . doi: 10.1016/j.ijbiomac.2023.123168 http://dx.doi.org/10.1016/j.ijbiomac.2023.123168
Hu J. ; Kong Z. Q. ; Liu K. ; Qin J. L. ; Tao Y. H. ; Zhou L. J. ; Yuan Y. ; Jiang M. ; Duan Y. X. ; Zhang J. M. Carboxylation of cellulose nanocrystals for reinforcing and toughing rubber through dual cross-linking networks . ACS Appl. Polym. Mater. , 2021 , 3 ( 12 ), 6120 - 6129 . doi: 10.1021/acsapm.1c00975 http://dx.doi.org/10.1021/acsapm.1c00975
Lorwanishpaisarn N. ; Sae-Oui P. ; Amnuaypanich S. ; Siriwong C. Fabrication of untreated and silane-treated carboxylated cellulose nanocrystals and their reinforcement in natural rubber biocomposites . Sci. Rep. , 2023 , 13 ( 1 ), 2517 . doi: 10.1038/s41598-023-29531-x http://dx.doi.org/10.1038/s41598-023-29531-x
Hu J. ; Yang F. ; Liu K. ; Kong Z. Q. ; Qin J. L. ; Duan Y. X. ; Zhang J. M. Effects of cellulose nanocrystals on the vulcanization of natural rubber/cellulose nanocrystals nanocomposite and corresponding regulating strategies . J. Polym. Sci. , 2021 , 59 ( 23 ), 2990 - 3000 . doi: 10.1002/pol.20210603 http://dx.doi.org/10.1002/pol.20210603
Deng S. ; Binauld S. ; Mangiante G. ; Frances J. M. ; Charlot A. ; Bernard J. ; Zhou X. ; Fleury E. Microcrystalline cellulose as reinforcing agent in silicone elastomers . Carbohydr. Polym. , 2016 , 151 , 899 - 906 . doi: 10.1016/j.carbpol.2016.06.035 http://dx.doi.org/10.1016/j.carbpol.2016.06.035
Le Gars M. ; Delvart A. ; Roger P. ; Belgacem M. N. ; Bras J. Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules . Colloid Polym. Sci. , 2020 , 298 ( 6 ), 603 - 617 . doi: 10.1007/s00396-020-04640-5 http://dx.doi.org/10.1007/s00396-020-04640-5
Follain N. ; Marais M. F. ; Montanari S. ; Vignon M. R. Coupling onto surface carboxylated cellulose nanocrystals . Polymer , 2010 , 51 ( 23 ), 5332 - 5344 . doi: 10.1016/j.polymer.2010.09.001 http://dx.doi.org/10.1016/j.polymer.2010.09.001
Seta F. T. ; An X. Y. ; Liu L. Q. ; Zhang H. ; Yang J. ; Zhang W. ; Nie S. X. ; Yao S. Q. ; Cao H. B. ; Xu Q. L. ; Bu Y. F. ; Liu H. B. Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis . Carbohydr. Polym. , 2020 , 234 , 115942 . doi: 10.1016/j.carbpol.2020.115942 http://dx.doi.org/10.1016/j.carbpol.2020.115942
Wu Z. H. ; Xu J. ; Gong J. ; Li J. ; Mo L. H. Preparation, characterization and acetylation of cellulose nanocrystal allomorphs . Cellulose , 2018 , 25 ( 9 ), 4905 - 4918 . doi: 10.1007/s10570-018-1937-6 http://dx.doi.org/10.1007/s10570-018-1937-6
Ogunsona E. O. ; Panchal P. ; Mekonnen T. H. Surface grafting of acrylonitrile butadiene rubber onto cellulose nanocrystals for nanocomposite applications . Compos. Sci. Technol. , 2019 , 184 , 107884 . doi: 10.1016/j.compscitech.2019.107884 http://dx.doi.org/10.1016/j.compscitech.2019.107884
Li G. ; Zhang B. T. ; Tan Z. ; Jiang L. ; Yao Z. K. ; Zhang L. Fabrication of cellulose nanofiltration membranes by reusing a binary solvent of EMIMAc ionic liquid and DMSO . Ind. Eng. Chem. Res. , 2023 , 62 ( 36 ), 14588 - 14600 . doi: 10.1021/acs.iecr.3c02148 http://dx.doi.org/10.1021/acs.iecr.3c02148
Guo Y. L. ; Guo G. ; Liu P. C. ; You Y. ; Yuan J. L. ; Hu G. ; Dai L. ; North M. ; Xie H. B. ; Zheng Q. The synthesis of multifunctional cellulose graft alternating copolymers of 3,4-dihydrocoumarin and epoxides in DBU/DMSO/CO 2 solvent system . Int. J. Biol. Macromol. , 2023 , 252 , 126584 . doi: 10.1016/j.ijbiomac.2023.126584 http://dx.doi.org/10.1016/j.ijbiomac.2023.126584
Yu H. Y. ; Chen R. ; Chen G. Y. ; Liu L. ; Yang X. G. ; Yao J. M. Silylation of cellulose nanocrystals and their reinforcement of commercial silicone rubber . J. Nanopart. Res. , 2015 , 17 ( 9 ), 361 . doi: 10.1007/s11051-015-3165-4 http://dx.doi.org/10.1007/s11051-015-3165-4
Dong F. Y. ; Ma D. P. ; Feng S. Y. Aminopropyl-modified silica as cross-linkers of polysiloxane containing γ-chloropropyl groups for preparing heat-curable silicone rubber . Polym. Test. , 2016 , 52 , 124 - 132 . doi: 10.1016/j.polymertesting.2016.04.011 http://dx.doi.org/10.1016/j.polymertesting.2016.04.011
Tan J. Y. ; Esteves A. C. C. ; Yang J. L. ; Zhou S. X. Zwitterion-bearing silica sol for enhancing antifouling performance and mechanical strength of transparent pdms coatings . Prog. Org. Coat. , 2024 , 191 . doi: 10.1016/j.porgcoat.2024.108869 http://dx.doi.org/10.1016/j.porgcoat.2024.108869
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构