浏览全部资源
扫码关注微信
清华大学化学工程系高分子研究所 北京 100084
[ "梁福鑫,男,1981年生. 现任清华大学化学工程系副教授,博士生导师. 2011年博士毕业于中国科学院,获得理学博士学位,同年加入中国科学院化学研究所,历任助理研究员、副研究员、研究员. 曾获中国科学院院长优秀奖、中国科学院优秀博士学位论文奖、中国颗粒学会/赢创颗粒学创新奖等. 2016年获得国家自然科学基金优秀青年基金资助,因Janus材料产业化工作入选泰山产业领军人才. 主要从事Janus材料、功能微胶囊等高分子分区复合材料研究." ]
收稿日期:2025-05-03,
录用日期:2025-06-18,
网络出版日期:2025-08-13,
移动端阅览
龙莹春, 梁福鑫. 乳液聚合制备Janus颗粒研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25054
Long, Y. C.; Liang, F. X. Research advances in Janus particles prepared by emulsion polymerization. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25054
龙莹春, 梁福鑫. 乳液聚合制备Janus颗粒研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25054 DOI: CSTR: 32057.14.GFZXB.2025.7441.
Long, Y. C.; Liang, F. X. Research advances in Janus particles prepared by emulsion polymerization. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25054 DOI: CSTR: 32057.14.GFZXB.2025.7441.
Janus颗粒因其独特的表面分区结构,在多相多组分复合体系界面调控和功能化方面展现出重要作用. 然而,Janus颗粒结构相对复杂,其微结构精确调控和批量化制备一直是限制其更多应用探索的瓶颈问题. 本综述从Janus颗粒结构构筑原理出发,简述了Janus颗粒制备技术的重要发展历程,重点介绍了乳液聚合方法在Janus颗粒制备方面优势,并从传统乳液聚合、种子乳液聚合、Pickering乳液聚合和乳液界面聚合四个方面总结了乳液聚合制备Janus颗粒的最新研究进展. 传统乳液聚合方面主要介绍了一步构筑Janus乳液的体系特点,以及介绍了种子乳液聚合的原理、Pickering乳液聚合的发展和乳液界面聚合中调控Janus颗粒形貌和结构的影响因素,最后探讨了Janus颗粒制备技术的未来发展方向.
Janus particles are commonly defined as colloidal structures with two distinct surface regions that differ in physical or chemical properties. They have been widely recognized for their multifunctionality in areas such as emulsion stabilization
targeted drug delivery
catalysis
and sensing. Due to their anisotropic nature
enhanced interfacial behavior and spatially selective interactions can be achieved. However
the precise control of their microstructures and the development of scalable fabrication techniques remain key challenges. To address these limitations
emulsion polymerization has been extensively employed as a versatile and controllable method. Its mild reaction conditions
compatibility with various monomers
and tunable polymerization pathways have enabled the successful preparation of a wide range of Janus particles. Four principal emulsion polymerization strategies have been developed and systematically studied: traditional emulsion polymerization
seeded emulsion polymerization
Pickering emulsion polymerization
and interfacial emulsion polymerization. In traditional approaches
Janus emulsions are typically formed in a one-step process
but fine control over morphology is often limited. In seeded emulsion polymerization
asymmetry is introduced by directional polymer growth on preformed seed particles
allowing greater precision in particle structure. In Pickering emulsion polymerization
emulsion droplets are stabilized by solid particles
and polymerization is selectively initiated at specific regions through masking effects or selective monomer affinity at interfaces
enabling precise control of particle morphology and composition. In interfacial emulsion polymerization
polymer growth is triggered at phase boundaries
permitting the fabrication of compartmentalized and well-defined Janus architectures. Although significant advancements have been achieved through these methods
difficulties in reproducibility
yield
and large-scale production continue to hinder their broader application. To overcome these issues
further improvements in interfacial stability
emulsion design
and polymerization kinetics are required. Overall
emulsion polymerization has been demonstrated as an effective technique for the fabrication of Janus particles
and continued progress in this field is expected to facilitate their transition from laboratory-scale synthesis in advanced materials research to industrial-scale production.
Casagrande C. ; Fabre P. ; Raphaël E. ; Veyssié M. " Janus beads": realization and behaviour at water/oil interfaces . Europhys. Lett. , 1989 , 9 ( 3 ), 251 - 255 . doi: 10.1209/0295-5075/9/3/011 http://dx.doi.org/10.1209/0295-5075/9/3/011
de Gennes P. G. Soft matter . Rev. Mod. Phys. , 1992 , 64 , 645 - 648 . doi: 10.1103/revmodphys.64.645 http://dx.doi.org/10.1103/revmodphys.64.645
Kim J. W. ; Lee D. ; Shum H. C. ; Weitz D. A. Colloid surfactants for emulsion stabilization . Adv. Mater. , 2008 , 20 ( 17 ), 3239 - 3243 . doi: 10.1002/adma.200800484 http://dx.doi.org/10.1002/adma.200800484
Zhou Y. Y. ; Shen F. ; Zhang S. D. ; Zhao Q. Q. ; Xu Z. ; Chen H. L. Synthesis of methyl-capped TiO 2 -SiO 2 Janus Pickering emulsifiers for selective photodegradation of water-soluble dyes . ACS Appl. Mater. Interfaces, 2020, 12 , 29876 - 29882 . doi: 10.1021/acsami.0c01064 http://dx.doi.org/10.1021/acsami.0c01064
Song Y. Y. ; Zhou J. J. ; Fan J. B. ; Zhai W. Z. ; Meng J. X. ; Wang S. T. Hydrophilic/oleophilic magnetic Janus particles for the rapid and efficient oil-water separation . Adv. Funct. Mater. , 2018 , 28 ( 32 ), 1802493 . doi: 10.1002/adfm.201802493 http://dx.doi.org/10.1002/adfm.201802493
Song Z. N. ; Li X. Z. ; Liang F. X. An ideal catalyst carrier: patchy nanoparticles with dual functional domains of substrate enrichment and catalysis . Chem. Commun. , 2022 , 58 ( 69 ), 9646 - 9649 . doi: 10.1039/d2cc03083g http://dx.doi.org/10.1039/d2cc03083g
Chen C. ; Zhang L. L. ; Wang N. ; Sun D. Y. ; Yang Z. Z. Janus composite particles and interfacial catalysis thereby . Macromol. Rapid Commun. , 2023 , 44 ( 20 ), e 2300280 . doi: 10.1002/marc.202300280 http://dx.doi.org/10.1002/marc.202300280
Cui D. H. ; Shi B. F. ; Xia Z. N. ; Zhu W. J. ; Lü C. L. Construction of polymer-decorated Fe 3 O 4 @Catechol-formaldehyde resin amphiphilic Janus nanospheres for catalytic applications. ACS Appl. Nano Mater. , 2022 , 5 ( 4 ), 5660 - 5669 . doi: 10.1021/acsanm.2c00595 http://dx.doi.org/10.1021/acsanm.2c00595
Guan J. P. ; Gui H. G. ; Zheng Y. Y. ; You J. C. ; Li Y. J. ; Liang F. X. ; Yang Z. Z. Stabilizing polymeric interface by Janus nanosheet . Macromol. Rapid Commun. , 2020 , 41 ( 19 ), e 2000392 . doi: 10.1002/marc.202000392 http://dx.doi.org/10.1002/marc.202000392
Walther A. ; Matussek K. ; Müller A. H. E. Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles . ACS Nano , 2008 , 2 ( 6 ), 1167 - 1178 . doi: 10.1021/nn800108y http://dx.doi.org/10.1021/nn800108y
He H. L. ; Liang F. X. Interfacial engineering of polymer blend with Janus particle as compatibilizer . Chinese J. Polym. Sci. , 2023 , 41 ( 4 ), 500 - 515 . doi: 10.1007/s10118-022-2878-y http://dx.doi.org/10.1007/s10118-022-2878-y
He H. L. ; Liang F. X. Engineering polymer blends with controllable interfacial location of Janus particles as compatibilizers . Chem. Mater. , 2022 , 34 ( 8 ), 3806 - 3818 . doi: 10.1021/acs.chemmater.2c00307 http://dx.doi.org/10.1021/acs.chemmater.2c00307
Liu T. L. ; Long Y. C. ; Liang F. X. Janus particles toward hierarchical functional coating and beyond . Polymer , 2024 , 309 , 127433 . doi: 10.1016/j.polymer.2024.127433 http://dx.doi.org/10.1016/j.polymer.2024.127433
Kirillova A. ; Marschelke C. ; Friedrichs J. ; Werner C. ; Synytska A. Hybrid hairy Janus particles as building blocks for antibiofouling surfaces . ACS Appl. Mater. Interfaces , 2016 , 8 ( 47 ), 32591 - 32603 . doi: 10.1021/acsami.6b10588 http://dx.doi.org/10.1021/acsami.6b10588
黄子涵 ; 董伯骏 ; 陈鹏宇 ; 杨烨 ; 朱国龙 ; 燕立唐 . 含Janus粒子组装体的构筑、调控及功能的模拟与理论分析 . 高分子学报 , 2016 , 8 , 979 - 991 . doi: 10.11777/j.issn1000-3304.2016.16055 http://dx.doi.org/10.11777/j.issn1000-3304.2016.16055
Wang S. H. ; Liu H. P. ; Wu Q. H. ; Shu Y. ; Wang Q. W. ; Zhang G. L. ; Xu L. ; Liang F. X. Catalytic Janus nanoparticle-based recyclable emulsifiers for collaborative treatment of water-soluble and water-insoluble organic pollutants . ACS Appl. Nano Mater. , 2024 , 7 ( 12 ), 14820 - 14828 . doi: 10.1021/acsanm.4c02810 http://dx.doi.org/10.1021/acsanm.4c02810
Zhang M. ; Jiang C. ; Wu Q. H. ; Zhang G. L. ; Liang F. X. ; Yang Z. Z. Poly(lactic acid)/poly(butylene succinate) (PLA/PBS) layered composite gas barrier membranes by anisotropic Janus nanosheets compartibilizers . ACS Macro Lett. , 2022 , 11 ( 5 ), 657 - 662 . doi: 10.1021/acsmacrolett.2c00139 http://dx.doi.org/10.1021/acsmacrolett.2c00139
He H. L. ; Yang T. T. ; Liu T. L. ; Gao Y. Q. ; Zhang Z. Y. ; Yang Z. Z. ; Liang F. X. Soft-hard Janus nanoparticles triggered hierarchical conductors with large stretchability, high sensitivity, and superior mechanical properties . Adv. Mater. , 2024 , 36 ( 15 ), e 2312278 . doi: 10.1002/adma.202312278 http://dx.doi.org/10.1002/adma.202312278
Han B. ; Song Y. L. ; Wang S. ; Yang T. T. ; Sun Z. T. ; Wang A. J. ; Jin M. R. ; Yang Z. Z. ; Wang X. Y. ; Liang F. X. Biomimetic Janus particles induced in situ interfacial remineralization for dentin hypersensitivity . Adv. Funct. Mater. , 2025 , 35 ( 8 ), 2412954 . doi: 10.1002/adfm.202412954 http://dx.doi.org/10.1002/adfm.202412954
Deng R. H. ; Liang F. X. ; Zhou P. ; Zhang C. L. ; Qu X. Z. ; Wang Q. ; Li J. L. ; Zhu J. T. ; Yang Z. Z. Janus nanodisc of diblock copolymers . Adv. Mater. , 2014 , 26 ( 26 ), 4469 - 4472 . doi: 10.1002/adma.201305849 http://dx.doi.org/10.1002/adma.201305849
Kim J. W. ; Larsen R. J. ; Weitz D. A. Synthesis of nonspherical colloidal particles with anisotropic properties . J. Am. Chem. Soc. , 2006 , 128 ( 44 ), 14374 - 14377 . doi: 10.1021/ja065032m http://dx.doi.org/10.1021/ja065032m
Nie Z. H. ; Li W. ; Seo M. ; Xu S. Q. ; Kumacheva E. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly . J. Am. Chem. Soc. , 2006 , 128 ( 29 ), 9408 - 9412 . doi: 10.1021/ja060882n http://dx.doi.org/10.1021/ja060882n
Zhu A. D. ; Guo M. Y. Single emulsion microfluidic production of Janus and core-shell particles via off-chip polymerization . Chinese J. Polym. Sci. , 2016 , 34 ( 3 ), 367 - 377 . doi: 10.1007/s10118-016-1748-x http://dx.doi.org/10.1007/s10118-016-1748-x
Hong L. ; Jiang S. ; Granick S. Simple method to produce Janus colloidal particles in large quantity . Langmuir , 2006 , 22 ( 23 ), 9495 - 9499 . doi: 10.1021/la062716z http://dx.doi.org/10.1021/la062716z
Liang F. X. ; Liu J. G. ; Zhang C. L. ; Qu X. Z. ; Li J. L. ; Yang Z. Z. Janus hollow spheres by emulsion interfacial self-assembled Sol-gel process . Chem. Commun. , 2011 , 47 ( 4 ), 1231 - 1233 . doi: 10.1039/c0cc03599h http://dx.doi.org/10.1039/c0cc03599h
Liu S. H. ; Lin Y. H. ; Guo W. T. ; Li S. M. ; Mai W. C. ; Wang H. ; Fu R. W. ; Wu D. C. Fabrication of silver Yolk@Porous Janus polymer shell nanospheres for synergistic catalysis . Chinese J. Polym. Sci. , 2020 , 38 ( 8 ), 847 - 852 . doi: 10.1007/s10118-020-2419-5 http://dx.doi.org/10.1007/s10118-020-2419-5
李枫霖 ; 杨雅静 ; 孙大吟 ; 叶一兰 ; 杨振忠 . 规模制备Janus聚合物单链@纳米颗粒杂化体 . 高分子学报 , 2025 , 56 ( 1 ), 114 - 123 . doi: 10.11777/j.issn1000-3304.2024.24173 http://dx.doi.org/10.11777/j.issn1000-3304.2024.24173
Tauer K. ; Kuehn I. Modeling particle formation in emulsion polymerization: an approach by means of the classical nucleation theory . Macromolecules , 1995 , 28 ( 7 ), 2236 - 2239 . doi: 10.1021/ma00111a018 http://dx.doi.org/10.1021/ma00111a018
Engelis N. G. ; Anastasaki A. ; Nurumbetov G. ; Truong N. P. ; Nikolaou V. ; Shegiwal A. ; Whittaker M. R. ; Davis T. P. ; Haddleton D. M. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization . Nat. Chem. , 2017 , 9 ( 2 ), 171 - 178 . doi: 10.1038/nchem.2634 http://dx.doi.org/10.1038/nchem.2634
Lin F. ; Morgen T. O. ; Mecking S. Living aqueous microemulsion polymerization of ethylene with robust Ni(II) phosphinophenolato catalysts . J. Am. Chem. Soc. , 2021 , 143 ( 49 ), 20605 - 20608 . doi: 10.1021/jacs.1c10488 http://dx.doi.org/10.1021/jacs.1c10488
Morris P. T. ; Watanabe K. ; Albanese K. R. ; Kent G. T. ; Gupta R. ; Gerst M. ; Read de Alaniz J. ; Hawker C. J. ; Bates C. M. Scalable synthesis of degradable copolymers containing α -lipoic acid via miniemulsion polymerization . J. Am. Chem. Soc. , 2024 , 146 ( 44 ), 30662 - 30667 . doi: 10.1021/jacs.4c12438 http://dx.doi.org/10.1021/jacs.4c12438
Walther A. ; Müller A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications . Chem. Rev. , 2013 , 113 , 5194 - 5261 . doi: 10.1021/cr300089t http://dx.doi.org/10.1021/cr300089t
Liu H. P. ; Long Y. C. ; Liang F. X. Interfacial activity of Janus particle: unity of molecular surfactant and homogeneous particle . Chem. Asian J. , 2024 , 19 ( 5 ), e 202301078 . doi: 10.1002/asia.202301078 http://dx.doi.org/10.1002/asia.202301078
Esteki B. ; Masoomi M. ; Moosazadeh M. ; Yoo C. Data-driven prediction of Janus/core-shell morphology in polymer particles: a machine-learning approach . Langmuir , 2023 , 39 ( 14 ), 4943 - 4958 . doi: 10.1021/acs.langmuir.2c03355 http://dx.doi.org/10.1021/acs.langmuir.2c03355
Tu F. Q. ; Lee D. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties . J. Am. Chem. Soc. , 2014 , 136 ( 28 ), 9999 - 10006 . doi: 10.1021/ja503189r http://dx.doi.org/10.1021/ja503189r
Isojima T. ; Lattuada M. ; Vander Sande J. B. ; Hatton T. A. Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles . ACS Nano , 2008 , 2 ( 9 ), 1799 - 1806 . doi: 10.1021/nn800089z http://dx.doi.org/10.1021/nn800089z
Zhang L. L. ; Shi S. Y. ; Zhang G. L. ; Song X. M. ; Sun D. Y. ; Liang F. X. ; Yang Z. Z. Responsive polymeric Janus cage . Chem. Commun. , 2020 , 56 ( 72 ), 10497 - 10500 . doi: 10.1039/d0cc04451b http://dx.doi.org/10.1039/d0cc04451b
Minami H. Preparation and morphology control of poly(ionic liquid) particles . Langmuir , 2020 , 36 ( 30 ), 8668 - 8679 . doi: 10.1021/acs.langmuir.0c01182 http://dx.doi.org/10.1021/acs.langmuir.0c01182
Dehghani E. ; Barzgari-Mazgar T. ; Salami-Kalajahi M. ; Kahaie-Khosrowshahi A. A pH-controlled approach to fabricate electrolyte/non-electrolyte Janus particles with low cytotoxicity as carriers of DOX . Mater. Chem. Phys. , 2020 , 249 , 123000 . doi: 10.1016/j.matchemphys.2020.123000 http://dx.doi.org/10.1016/j.matchemphys.2020.123000
Wei D. ; Ge L. L. ; Lu S. H. ; Li J. J. ; Guo R. Janus particles templated by Janus emulsions and application as a Pickering emulsifier . Langmuir , 2017 , 33 ( 23 ), 5819 - 5828 . doi: 10.1021/acs.langmuir.7b00939 http://dx.doi.org/10.1021/acs.langmuir.7b00939
Ge L. L. ; Lu S. H. ; Han J. ; Guo R. Anisotropic particles templated by Janus emulsion . Chem. Commun. , 2015 , 51 ( 35 ), 7432 - 7434 . doi: 10.1039/c5cc00935a http://dx.doi.org/10.1039/c5cc00935a
Zhao Y. L. ; Liu J. L. ; Chen Z. ; Zhu X. M. ; Möller M. Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization . Nat. Commun. , 2018 , 9 ( 1 ), 1918 . doi: 10.1038/s41467-018-04320-7 http://dx.doi.org/10.1038/s41467-018-04320-7
Gao D. G. ; Zhao Z. Y. ; Lyu B. ; Ma J. Z. ; Chang R. Janus composites particles: prepared via cross-linking driven one-step miniemulsion polymerization and as film-forming material . J. Am. Ceram. Soc. , 2022 , 105 ( 1 ), 687 - 699 . doi: 10.1111/jace.18082 http://dx.doi.org/10.1111/jace.18082
Li Y. F. ; Chen S. S. ; Demirci S. ; Qin S. Y. ; Xu Z. H. ; Olson E. ; Liu F. ; Palm D. ; Yong X. ; Jiang S. Morphology evolution of Janus dumbbell nanoparticles in seeded emulsion polymerization . J. Colloid Interface Sci. , 2019 , 543 , 34 - 42 . doi: 10.1016/j.jcis.2019.01.109 http://dx.doi.org/10.1016/j.jcis.2019.01.109
Jiang K. ; Liu Y. N. ; Yan Y. P. ; Wang S. L. ; Liu L. Y. ; Yang W. T. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches . Polym. Chem. , 2017 , 8 ( 8 ), 1404 - 1416 . doi: 10.1039/c6py02094a http://dx.doi.org/10.1039/c6py02094a
Tang C. ; Zhang C. L. ; Sun Y. J. ; Liang F. X. ; Wang Q. ; Li J. L. ; Qu X. Z. ; Yang Z. Z. Janus anisotropic hybrid particles with tunable size from patchy composite spheres . Macromolecules , 2013 , 46 ( 1 ), 188 - 193 . doi: 10.1021/ma3020883 http://dx.doi.org/10.1021/ma3020883
Sun Y. J. ; Liang F. X. ; Qu X. Z. ; Wang Q. ; Yang Z. Z. Robust reactive Janus composite particles of snowman shape . Macromolecules , 2015 , 48 ( 8 ), 2715 - 2722 . doi: 10.1021/acs.macromol.5b00207 http://dx.doi.org/10.1021/acs.macromol.5b00207
Yu X. T. ; Sun Y. J. ; Liang F. X. ; Jiang B. Y. ; Yang Z. Z. Triblock Janus particles by seeded emulsion polymerization . Macromolecules , 2019 , 52 ( 1 ), 96 - 102 . doi: 10.1021/acs.macromol.8b02101 http://dx.doi.org/10.1021/acs.macromol.8b02101
Yuan J. F. ; Wang L. X. ; Zhu L. ; Pan M. W. ; Wang W. J. ; Liu Y. ; Liu G. Nonspherical nanoparticles with controlled morphologies via seeded surface-initiated single electron transfer radical polymerization in soap-free emulsion . Langmuir , 2015 , 31 ( 14 ), 4087 - 4095 . doi: 10.1021/acs.langmuir.5b00132 http://dx.doi.org/10.1021/acs.langmuir.5b00132
Zhang C. L. ; Liu B. ; Tang C. ; Liu J. G. ; Qu X. Z. ; Li J. L. ; Yang Z. Z. Large scale synthesis of Janus submicron sized colloids by wet etching anisotropic ones . Chem. Commun. , 2010 , 46 ( 25 ), 4610 - 4612 . doi: 10.1039/c0cc00054j http://dx.doi.org/10.1039/c0cc00054j
Liu Y. F. ; He H. L. ; Yang M. ; Zhang R. Z. ; Yu S. T. ; Yang T. T. ; Wang W. Z. ; Liang F. X. Novel concept of nano-additive design: PTFE@silica Janus nanoparticles for water lubrication . Friction , 2024 , 12 ( 2 ), 258 - 270 . doi: 10.1007/s40544-023-0749-3 http://dx.doi.org/10.1007/s40544-023-0749-3
Liu B. ; Liu J. G. ; Liang F. X. ; Wang Q. ; Zhang C. L. ; Qu X. Z. ; Li J. L. ; Qiu D. ; Yang Z. Z. Robust anisotropic composite particles with tunable Janus balance . Macromolecules , 2012 , 45 ( 12 ), 5176 - 5184 . doi: 10.1021/ma300409r http://dx.doi.org/10.1021/ma300409r
Gui H. G. ; Li Y. Y. ; Du D. M. ; Meng Q. B. ; Song X. M. ; Liang F. X. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture . J. Colloid Interface Sci. , 2022 , 618 , 496 - 506 . doi: 10.1016/j.jcis.2022.03.081 http://dx.doi.org/10.1016/j.jcis.2022.03.081
Luo Z. ; Liu B. Shape-tunable colloids from structured liquid droplet templates . Angew. Chem. Int. Ed , 2018 , 57 ( 18 ), 4940 - 4945 . doi: 10.1002/anie.201800587 http://dx.doi.org/10.1002/anie.201800587
Xu J. C. ; Qiu J. C. ; Zhang H. H. ; Hu Y. H. ; Xia Y. N. Polystyrene-silica colloidal Janus particles with uniform shapes and complex structures . Part. Part. Syst. Charact. , 2022 , 39 ( 8 ), 2200085 . doi: 10.1002/ppsc.202200085 http://dx.doi.org/10.1002/ppsc.202200085
Pham B. T. T. ; Such C. H. ; Hawkett B. S. Synthesis of polymeric Janus nanoparticles and their application in surfactant-free emulsion polymerizations . Polym. Chem. , 2015 , 6 ( 3 ), 426 - 435 . doi: 10.1039/c4py01125b http://dx.doi.org/10.1039/c4py01125b
Wang S. ; University T. ; Long Y. C. ; University T. ; Liu H. P. ; University T. ; Liang F. X. ; University T. One-pot seeded emulsion polymerization for Janus particles with various morphologies regulated by monomer plasticization and flow field . Macromolecules , 2025 , acs.macromol. 5 c 00356 . doi: 10.1021/acs.macromol.5c00356 http://dx.doi.org/10.1021/acs.macromol.5c00356
Nedyalkova M. ; Russo G. ; Loche P. ; Lattuada M. Revealing the formation dynamics of Janus polymer particles: insights from experiments and molecular dynamics . J. Chem. Inf. Model. , 2023 , 63 ( 23 ), 7453 - 7463 . doi: 10.1021/acs.jcim.3c01547 http://dx.doi.org/10.1021/acs.jcim.3c01547
Binks B. P. ; Lumsdon S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions . Langmuir , 2000 , 16 ( 23 ), 8622 - 8631 . doi: 10.1021/la000189s http://dx.doi.org/10.1021/la000189s
Pieranski P. Two-dimensional interfacial colloidal crystals . Phys. Rev. Lett. , 1980 , 45 ( 7 ), 569 - 572 . doi: 10.1103/physrevlett.45.569 http://dx.doi.org/10.1103/physrevlett.45.569
Binks B. P. ; Fletcher P. D. I. Particles adsorbed at the oil–water interface: a theoretical comparison between spheres of uniform wettability and "Janus" particles . Langmuir , 2001 , 17 ( 16 ), 4708 - 4710 . doi: 10.1021/la0103315 http://dx.doi.org/10.1021/la0103315
Ling X. Y. ; Phang I. Y. ; Acikgoz C. ; Yilmaz M. D. ; Hempenius M. A. ; Vancso G. J. ; Huskens J. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly . Angew. Chem. Int. Ed , 2009 , 48 ( 41 ), 7677 - 7682 . doi: 10.1002/anie.200903579 http://dx.doi.org/10.1002/anie.200903579
Anderson K. D. ; Luo M. D. ; Jakubiak R. ; Naik R. R. ; Bunning T. J. ; Tsukruk V. V. Robust plasma polymerized-titania/silica Janus microparticles . Chem. Mater. , 2010 , 22 ( 10 ), 3259 - 3264 . doi: 10.1021/cm100500d http://dx.doi.org/10.1021/cm100500d
Paunov V. N. ; Cayre O. J. Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique . Adv. Mater. , 2004 , 16 ( 9-10 ), 788 - 791 . doi: 10.1002/adma.200306476 http://dx.doi.org/10.1002/adma.200306476
Liu B. ; Wei W. ; Qu X. Z. ; Yang Z. Z. Janus colloids formed by biphasic grafting at a Pickering emulsion interface . Angew. Chem. Int. Ed , 2008 , 47 ( 21 ), 3973 - 3975 . doi: 10.1002/anie.200705103 http://dx.doi.org/10.1002/anie.200705103
Zhang J. ; Jin J. ; Zhao H. Y. Surface-initiated free radical polymerization at the liquid-liquid interface: a one-step approach for the synthesis of amphiphilic Janus silica particles . Langmuir , 2009 , 25 ( 11 ), 6431 - 6437 . doi: 10.1021/la9000279 http://dx.doi.org/10.1021/la9000279
Li J. ; Wang Y. H. ; Zhang C. L. ; Liang F. X. ; Qu X. Z. ; Li J. L. ; Wang Q. ; Qiu D. ; Yang Z. Z. Janus polymeric cages . Polymer , 2012 , 53 ( 17 ), 3712 - 3718 . doi: 10.1016/j.polymer.2012.06.001 http://dx.doi.org/10.1016/j.polymer.2012.06.001
Liang F. X. ; Shen K. ; Qu X. Z. ; Zhang C. L. ; Wang Q. ; Li J. L. ; Liu J. G. ; Yang Z. Z. Inorganic Janus nanosheets . Angew. Chem. Int. Ed. , 2011 , 50 ( 10 ), 2379 - 2382 . doi: 10.1002/anie.201007519 http://dx.doi.org/10.1002/anie.201007519
Chen Y. ; Yang H. L. ; Zhang C. L. ; Wang Q. ; Qu X. Z. ; Li J. L. ; Liang F. X. ; Yang Z. Z. Janus cages of bilayered polymer–inorganic composites . Macromolecules , 2013 , 46 ( 10 ), 4126 - 4130 . doi: 10.1021/ma4006236 http://dx.doi.org/10.1021/ma4006236
Yang H. L. ; Liang F. X. ; Chen Y. ; Wang Q. ; Qu X. Z. ; Yang Z. Z. Lotus leaf inspired robust superhydrophobic coating from strawberry-like Janus particles . NPG Asia Mater. , 2015 , 7 ( 4 ), e 176 . doi: 10.1038/am.2015.33 http://dx.doi.org/10.1038/am.2015.33
Wang Y. H. ; Zhang C. L. ; Tang C. ; Li J. ; Shen K. ; Liu J. G. ; Qu X. Z. ; Li J. L. ; Wang Q. ; Yang Z. Z. Emulsion interfacial synthesis of asymmetric Janus particles . Macromolecules , 2011 , 44 ( 10 ), 3787 - 3794 . doi: 10.1021/ma102945t http://dx.doi.org/10.1021/ma102945t
Zhao H. ; Liang F. X. ; Qu X. Z. ; Wang Q. ; Yang Z. Z. Conelike Janus composite particles . Macromolecules , 2015 , 48 ( 3 ), 700 - 706 . doi: 10.1021/ma502421z http://dx.doi.org/10.1021/ma502421z
Kuijk A. ; van Blaaderen A. ; Imhof A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio . J. Am. Chem. Soc. , 2011 , 133 ( 8 ), 2346 - 2349 . doi: 10.1021/ja109524h http://dx.doi.org/10.1021/ja109524h
Wang J. ; Lu Y. Facile synthesis of asymmetrical flower-like silica . Mater. Des. , 2016 , 111 , 206 - 212 . doi: 10.1016/j.matdes.2016.08.093 http://dx.doi.org/10.1016/j.matdes.2016.08.093
Deng C. ; Zhang Q. ; Fu C. ; Zhou F. Z. ; Yang W. L. ; Yi D. L. ; Wang X. D. ; Tang Y. ; Caruso F. ; Wang Y. J. Template-free synthesis of chemically asymmetric silica nanotubes for selective cargo loading and sustained drug release . Chem. Mater. , 2019 , 31 ( 11 ), 4291 - 4298 . doi: 10.1021/acs.chemmater.9b01530 http://dx.doi.org/10.1021/acs.chemmater.9b01530
Zuo X. Y. ; Zhang M. ; Wu Q. H. ; Li Y. Y. ; Zhang G. L. ; Liang F. X. ; Yang Z. Z. Tadpole-like Janus nanotubes . Chem. Commun. , 2021 , 57 ( 47 ), 5834 - 5837 . doi: 10.1039/d1cc01172c http://dx.doi.org/10.1039/d1cc01172c
Long Y. C. ; Wu Q. H. ; Zuo X. Y. ; Zhang G. L. ; Zhang Z. X. ; Yang Z. Z. ; Liang F. X. Flask-like Janus colloidal motors with explicit direction and tunable speed . ACS Nano , 2022 , 16 ( 10 ), 16690 - 16698 . doi: 10.1021/acsnano.2c06235 http://dx.doi.org/10.1021/acsnano.2c06235
Long Y. C. ; Wu Q. H. ; Jiang C. ; Zhang G. L. ; Liang F. X. Anisotropic multitentacle Janus particles synthesized by selective asymmetric growth . Small , 2024 , 20 ( 12 ), e 2307203 . doi: 10.1002/smll.202307203 http://dx.doi.org/10.1002/smll.202307203
0
浏览量
80
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构