浏览全部资源
扫码关注微信
1.青岛大学 纺织服装学院 青岛 266071
2.青岛大学 生态纺织省部共建协同创新中心 青岛 266071
3.青岛大学 生物多糖纤维成型与生态纺织国家重点实验室 青岛 266071
E-mail: 13808980221@163.com
收稿日期:2025-03-03,
录用日期:2025-04-30,
网络出版日期:2025-06-26,
移动端阅览
徐恩婷, 姚晓军, 杨雪媛, 房磊, 包伟, 房宽峻. 基于二氯甲烷/六氟异丙醇溶剂体系的聚对苯二甲酸乙二酯中空纤维膜相分离调控与性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25061
Xu, E. T.; Yao, X. J.; Yang, X. Y.; Fang, L.; Bao, W.; Fang, K. J. Phase separation regulation and performance of PET hollow fiber membranes based on dichloromethane/hexafluoroisopropanol mixed solvents. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25061
徐恩婷, 姚晓军, 杨雪媛, 房磊, 包伟, 房宽峻. 基于二氯甲烷/六氟异丙醇溶剂体系的聚对苯二甲酸乙二酯中空纤维膜相分离调控与性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25061 DOI: CSTR: 32057.14.GFZXB.2025.7409.
Xu, E. T.; Yao, X. J.; Yang, X. Y.; Fang, L.; Bao, W.; Fang, K. J. Phase separation regulation and performance of PET hollow fiber membranes based on dichloromethane/hexafluoroisopropanol mixed solvents. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25061 DOI: CSTR: 32057.14.GFZXB.2025.7409.
聚对苯二甲酸乙二醇酯(PET)因为具有优异的力学性能和化学稳定性而在分离膜领域有着广泛的应用,此外作为大口径人工血管的关键材料,将其应用于制备小口径人造血管极具优势. 但它在常温条件下难以溶解的性质限制了它的生产和发展. 本研究通过构建二氯甲烷(DCM)与六氟异丙醇(HFIP)混合溶剂体系,探究PET在室温条件下的溶解行为,将PET溶解时间从24 h 缩短至0.5 h,并借助诱导PET发生旋节线相分离(spinodal decomposition)抑制指状孔的形成,使膜的平均孔径由1.58 μm 降低为0.87 μm. 研究表明,适量的DCM(10~20%)增强了膜的机械性能和过滤性能,为高性能中空纤维膜及其在小口径人工血管骨架中的应用提供了新策略.
Polyethylene terephthalate (PET) exhibits not only outstanding mechanical properties and chemical stability
but also benefits from industrial-scale availability
cost-effectiveness
and ease of recycling. PET has significant potential for the development of small-diameter vascular grafts as a key material for clinically used large-diameter artificial blood vessels. However
its limited solubility at room temperature has hindered its application in wet-spinning. To address this challenge
a binary solvent system comprising dichloromethane (DCM) and hexafluoroisopropanol (HFIP) was employed to achieve rapid dissolution of PET under mild conditions. The DCM-HFIP system markedly accelerated the dissolution process
reducing the required time from 24 h to 0.5 h at ambient temperature (25 ℃). Furthermore
the incorporation of DCM enhances the stability of the solvent system
while enabling precise control over the phase separation pathway. Spinodal phase separation was induced by modulating the DCM content
effectively suppressing the formation of finger-like pores and promoting a bicontinuous pore structure. This structural optimization reduces the average membrane pore size from 1.58 μm to 0.87 μm. Experimental results confirm that an optimal DCM concentration (10%-20%) significantly improves the membrane's mechanical strength and filtration efficiency
accompanied by a moderate reduction in surface roughness. This study provides a green and efficient strategy for fabricating high-performance PET hollow fiber membranes and establishes a theoretical foundation for their future biomedical applications
particularly in the development of small-diameter artificial vascular scaffolds. Notably
the proven biocompatibility of PET in large-diameter vascular grafts
combined with the biomimetic hollow lumen structure that closely resembles the natural human vasculature
positions this research as a pioneering pathway for advancing next-generation small-diameter artificial blood vessels.
Wang F. ; Liang M. D. ; Zhang B. ; Li W. Q. ; Huang X. C. ; Zhang X. C. ; Chen K. L. ; Li G. Advances in artificial blood vessels: exploring materials, preparation, and functionality . J. Mater. Sci. Technol. , 2025 , 219 , 225 - 256 . doi: 10.1016/j.jmst.2024.09.029 http://dx.doi.org/10.1016/j.jmst.2024.09.029
Nakanishi R. ; Sakayori T. ; Matsui D. ; Kono M. ; Maki M. ; Dunois C. ; Komiyama Y. ; Morisaki H. Effects of storage time and temperature on coagulation factor and natural anticoagulant activities in healthy individuals . Sci. Rep. , 2025 , 15 ( 1 ), 10797 . doi: 10.1038/s41598-025-95389-w http://dx.doi.org/10.1038/s41598-025-95389-w
Topuz F. ; Oldal D. G. ; Szekely G. Valorization of polyethylene terephthalate (PET) plastic wastes as nanofibrous membranes for oil removal: Sustainable solution for plastic waste and oil pollution . Ind. Eng. Chem. Res. , 2022 , 61 ( 25 ), 9077 - 9086 . doi: 10.1021/acs.iecr.2c01431 http://dx.doi.org/10.1021/acs.iecr.2c01431
Tu Y. Y. ; Wan X. T. ; Huan J. ; Zhu X. ; Li X. H. ; Tu Y. F. The effect of trifluoroacetic acid on molecular weight determination of polyesters: an in situ NMR investigation . Chinese J. Polym. Sci. , 2021 , 39 ( 12 ), 1590 - 1596 . doi: 10.1007/s10118-021-2605-0 http://dx.doi.org/10.1007/s10118-021-2605-0
Liu S. H. ; Chu Y. J. ; Tang C. ; He S. T. ; Wu C. R. High-performance chlorinated polyvinyl chloride ultrafiltration membranes prepared by compound additives regulated non-solvent induced phase separation . J. Membr. Sci. , 2020 , 612 , 118434 . doi: 10.1016/j.memsci.2020.118434 http://dx.doi.org/10.1016/j.memsci.2020.118434
Hou C. G. ; Pang Z. G. ; Xie S. C. ; Wong N. H. ; Sunarso J. ; Peng Y. L. Enhanced permeability and stability of PVDF hollow fiber membrane in DCMD via heat-stretching treatment . Sep. Purif. Technol. , 2023 , 304 , 122325 . doi: 10.1016/j.seppur.2022.122325 http://dx.doi.org/10.1016/j.seppur.2022.122325
Bhuyan C. ; Konwar A. ; Bora P. ; Rajguru P. ; Hazarika S. Cellulose nanofiber-poly(ethylene terephthalate) nanocomposite membrane from waste materials for treatment of petroleum industry wastewater . J. Hazard. Mater. , 2023 , 442 , 129955 . doi: 10.1016/j.jhazmat.2022.129955 http://dx.doi.org/10.1016/j.jhazmat.2022.129955
Zhang P. F. ; Xiang S. ; Gonzales R. R. ; Li Z. ; Chiao Y. H. ; Guan K. C. ; Hu M. Y. ; Xu P. ; Mai Z. H. ; Rajabzadeh S. ; Nakagawa K. ; Matsuyama H. Wetting-and scaling-resistant superhydrophobic hollow fiber membrane with hierarchical surface structure for membrane distillation . J. Membr. Sci. , 2024 , 693 , 122338 . doi: 10.1016/j.memsci.2023.122338 http://dx.doi.org/10.1016/j.memsci.2023.122338
Kahrs C. ; Schwellenbach J. Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study . Polymer , 2020 , 186 , 122071 . doi: 10.1016/j.polymer.2019.122071 http://dx.doi.org/10.1016/j.polymer.2019.122071
Pochivalov K. ; Basko A. ; Yurov M. ; Lebedeva T. ; Shalygin M. ; Lavrentyev V. ; Yushkin A. ; Anokhina T. ; Volkov A. Polypropylene membranes prepared via non-solvent/thermally induced phase separation: effect of non-solvent nature . J. Membr. Sci. , 2024 , 703 , 122839 . doi: 10.1016/j.memsci.2024.122839 http://dx.doi.org/10.1016/j.memsci.2024.122839
Yong M. ; Zhang Y. Q. ; Sun S. ; Liu W. Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: hydrophilicity and antifouling . J. Membr. Sci. , 2019 , 575 , 50 - 59 . doi: 10.1016/j.memsci.2019.01.005 http://dx.doi.org/10.1016/j.memsci.2019.01.005
Yu H. T. ; Wang Y. ; Chen L. ; Wei C. Y. ; Mu T. C. ; Xue Z. M. Biobased dimethyl isosorbide as an efficient solvent for alkaline hydrolysis of waste polyethylene terephthalate to terephthalic acid . Green Chem. , 2023 , 25 ( 19 ), 7807 - 7816 . doi: 10.1039/D3GC02308G http://dx.doi.org/10.1039/D3GC02308G
Xiang S. ; Zhang P. F. ; Rajabzadeh S. ; Gonzales R. R. ; Li Z. ; Shi Y. X. ; Zhou S. Y. ; Hu M. Y. ; Guan K. C. ; Matsuyama H. Development of porous polyketone membrane via liquid-liquid thermally induced phase separation . J. Membr. Sci. , 2023 , 677 , 121639 . doi: 10.1016/j.memsci.2023.121639 http://dx.doi.org/10.1016/j.memsci.2023.121639
Kiani S. ; Mousavi S. M. ; Bidaki A. Preparation of polyethylene terephthalate/xanthan nanofiltration membranes using recycled bottles for removal of diltiazem from aqueous solution . J. Clean. Prod. , 2021 , 314 , 128082 . doi: 10.1016/j.jclepro.2021.128082 http://dx.doi.org/10.1016/j.jclepro.2021.128082
Pulido B. A. ; Habboub O. S. ; Aristizabal S. L. ; Szekely G. ; Nunes S. P. Recycled poly(ethylene terephthalate) for high temperature solvent resistant membranes . ACS Appl. Polym. Mater. , 2019 , 1 ( 9 ), 2379 - 2387 . doi: 10.1021/acsapm.9b00493 http://dx.doi.org/10.1021/acsapm.9b00493
Li F. F. ; Chen Y. L. ; Li Y. X. ; Wan Y. M. ; Gao X. Q. ; Xiao J. ; Ma S. X. ; Yu Y. 2 , 3-Dichloropyridine solubility in 14 pure solvents: determination, correlation, Hansen solubility parameter, solvent effect and thermodynamic analysis . J. Chem. Thermodyn. , 2024, 191 , 107229 . doi: 10.1016/j.jct.2023.107229 http://dx.doi.org/10.1016/j.jct.2023.107229
Zhang Q. Q. ; Zhao J. C. ; Wang G. L. ; Zhang A. M. ; Chai J. L. ; Jiang L. ; Meng X. W. ; Zhao G. Q. Mechanically strong and heat-resistant waste poly(ethylene terephthalate) derived by carbon dioxide treatment at ambient temperature . J. Mater. Res. Technol. , 2023 , 25 , 3298 - 3313 . doi: 10.1016/j.jmrt.2023.06.152 http://dx.doi.org/10.1016/j.jmrt.2023.06.152
Zheng M. N. ; Li Y. W. ; Dong W. L. ; Zhang Q. Z. ; Wang W. X. Hydrolase-catalyzed depolymerization mechanism toward crystalline and amorphous polyethylene terephthalate . ACS Sustainable Chem. Eng. , 2024 , 12 ( 27 ), 10252 - 10259 . doi: 10.1021/acssuschemeng.4c02986 http://dx.doi.org/10.1021/acssuschemeng.4c02986
Motiwala H. F. ; Armaly A. M. ; Cacioppo J. G. ; Coombs T. C. ; Koehn K. R. K. ; Norwood V. M. IV, Aubé, J. HFIP in organic synthesis . Chem. Rev. , 2022 , 122 ( 15 ), 12544 - 12747 . doi: 10.1021/acs.chemrev.1c00749 http://dx.doi.org/10.1021/acs.chemrev.1c00749
Hoteling A. J. ; Mourey T. H. ; Owens K. G. Importance of solubility in the sample preparation of poly(ethylene terephthalate) for MALDI TOFMS . Anal. Chem. , 2005 , 77 ( 3 ), 750 - 756 . doi: 10.1021/ac048525n http://dx.doi.org/10.1021/ac048525n
Zhao L. H. ; Wu C. R. ; Liu Z. Y. ; Zhang Q. L. ; Lu X. L. Highly porous PVDF hollow fiber membranes for VMD application by applying a simultaneous co-extrusion spinning process . J. Membr. Sci. , 2016 , 505 , 82 - 91 . doi: 10.1016/j.memsci.2016.01.014 http://dx.doi.org/10.1016/j.memsci.2016.01.014
Wongchitphimon S. ; Wang R. ; Jiraratananon R. ; Shi L. ; Loh C. H. Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes . J. Membr. Sci. , 2011 , 369 ( 1-2 ), 329 - 338 . doi: 10.1016/j.memsci.2010.12.008 http://dx.doi.org/10.1016/j.memsci.2010.12.008
Yao D. X. ; Zhang F. ; Feng G. L. ; Zhang Y. F. ; Meng J. Q. High-flux PSF/PES-COOH hollow fiber loose nanofiltration membrane for high-efficiency dye-salt separation . J. Environ. Chem. Eng. , 2022 , 10 ( 4 ), 108180 . doi: 10.1016/j.jece.2022.108180 http://dx.doi.org/10.1016/j.jece.2022.108180
Cadore Í. R. ; Ambrosi A. ; Cardozo N. S. M. ; Tessaro I. C. Phase separation behavior of poly(ethylene terephthalate)/(trifluoroacetic acid/dichloromethane)/water system for wet phase inversion membrane preparation . J. Appl. Polym. Sci. , 2019 , 136 ( 13 ), 47263 . doi: 10.1002/app.47263 http://dx.doi.org/10.1002/app.47263
Tsugawa Y. ; Kadota K. ; Yoshida M. ; Shirakawa Y. Utilizing the phase-field method to investigate liquid-liquid phase separation in the ternary system of water/ethanol/butylparaben . Chem. Eng. Res. Des. , 2024 , 210 , 339 - 351 . doi: 10.1016/j.cherd.2024.08.040 http://dx.doi.org/10.1016/j.cherd.2024.08.040
Sun X. ; Meng Y. C. ; Hu K. L. ; Sun J. M. ; Zhou C. Y. ; Su C. K. ; Zhang L. H. ; Zhang C. H. ; Ma Z. F. Crystallization-driven formation of cluster assemblies on surface for super-hydrophobic poly(L-lactic acid)/ZnO composite membrane . Int. J. Biol. Macromol. , 2024 , 283 , 137815 . doi: 10.1016/j.ijbiomac.2024.137815 http://dx.doi.org/10.1016/j.ijbiomac.2024.137815
Mousavi S. M. ; Raveshiyan S. ; Amini Y. ; Zadhoush A. A critical review with emphasis on the rheological behavior and properties of polymer solutions and their role in membrane formation, morphology, and performance . Adv. Colloid Interface Sci. , 2023 , 319 , 102986 . doi: 10.1016/j.cis.2023.102986 http://dx.doi.org/10.1016/j.cis.2023.102986
Cadore Í. R. ; Ambrosi A. ; Cardozo N. S. M. ; Tessaro I. C. Poly(ethylene terephthalate) phase inversion membranes: thermodynamics and effects of a poor solvent on the membrane characteristics . Polym. Eng. Sci. , 2022 , 62 ( 6 ), 1847 - 1858 . doi: 10.1002/pen.25969 http://dx.doi.org/10.1002/pen.25969
Ensikat H. J. ; Ditsche-Kuru P. ; Neinhuis C. ; Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf . Beilstein J. Nanotechnol. , 2011 , 2 , 152 - 161 . doi: 10.3762/bjnano.2.19 http://dx.doi.org/10.3762/bjnano.2.19
Gao Y. ; Xing H. ; Zhang Y. F. Fabrication of poly(ethylene terephthalate)-based porous sponges for oil-water separation . Sep. Purif. Technol. , 2025 , 354 , 128721 . doi: 10.1016/j.seppur.2024.128721 http://dx.doi.org/10.1016/j.seppur.2024.128721
Hikita S. ; Shintani T. ; Nakagawa K. ; Matsuyama H. ; Yoshioka T. Structure control of hydrophilized pvdf hollow-fiber membranes using amphiphilic copolymers: pmma-co-p (hema-co-mea) . J. Membr. Sci. , 2020 , 612 , 118421 . doi: 10.1016/j.memsci.2020.118421 http://dx.doi.org/10.1016/j.memsci.2020.118421
0
浏览量
51
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构