浏览全部资源
扫码关注微信
金属材料强度国家重点实验室 西安交通大学材料科学与工程学院 西安 710049
[ "闫晗,男,1985年生. 2008和2013年分别在华中科技大学和中国科学院国家纳米科学中心获得学士和博士学位;其后在加拿大多伦多大学从事博士后研究. 2017~2023年,西安交通大学,特聘研究员;2024年至今,西安交通大学,教授. 当前从事有机半导体材料分子掺杂和有机太阳能电池器件研究." ]
收稿日期:2025-03-05,
录用日期:2025-04-10,
网络出版日期:2025-05-14,
移动端阅览
王泽宇, 闫晗. 分子掺杂半透明有机太阳能电池研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304. 2025.25062
Wang, Z. Y.; Yan, H. Progresses of molecularly doped semitransparent organic solar cells. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25062
王泽宇, 闫晗. 分子掺杂半透明有机太阳能电池研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304. 2025.25062 DOI: 10.11777/j.issn1000-3304.2025.25062. CSTR: 32057.14.GFZXB.2025.7399.
Wang, Z. Y.; Yan, H. Progresses of molecularly doped semitransparent organic solar cells. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25062 DOI: CSTR: 32057.14.GFZXB.2025.7399.
发展半透明太阳能电池技术,是实现城市清洁、规模用电的重要策略.有机太阳能电池的活性层由吸收光谱互补的给、受体材料组成,降低给体材料含量即可增加活性层的可见光透过率;然而,给体含量减少会阻碍光生电荷的产生与收集,引起活性层高透光率与高转换效率之间的矛盾.本综述从这一难点出发,综述了近年来以分子掺杂为破解方法的半透明有机太阳能电池研究进展,围绕如何实现有机太阳能电池的活性层分子掺杂及分子掺杂如何优化非理想形貌下的光伏过程,依次介绍分子掺杂机理、掺杂剂分布调控、掺杂改善电荷收集和掺杂促进激子解离四方面的研究进展.最后,概述活性层掺杂有机太阳能电池未来发展所面临的三大挑战.
Developing the semitransparent solar cells is crucial to large-scale solar energy utilization in modern city. The photoactive layer of organic solar cells (OSCs) is composed of the donor and acceptor materials with complementary absorptions
where reducing the donor content is facile to enhance the visible-light transmittance. However
the donor dilution approach inevitably inhibits the photo-charge generation and collection
which leads to the critical trade-off between optical transparency and power conversion efficiency (PCE) in semitransparent OSCs (ST-OSCs). Herein
we briefly review the recent progresses on this issue
especially focusing on the molecularly doped ST-OSCs. We try to clarify two pivotal questions: (1) How to achieve effective molecular doping in organic photoactive layer? (2) How does molecular doping optimize photovoltaic process in the suboptimal blend film morphology? Following by the two questions
the basic knowledge of molecular doping is introduced
including doping mechanism (oxidation/reduction dopants and acid/base dopants) and representative P-type and N-type molecular dopants. Next
effective doping requires precise control over the distribution of dopants within the active layer
namely P-type dopants in the donor material and N-type dopants in the acceptor material. The concept of sequential doping processes and using dopant's carrier
like solid solvent for dopants are explored to enhance electrical performance. In response to the reduction in donor content and the obstruction of hole transport
molecular doping improves in two aspects: trap filling and built-in electric field profiling
which enhances the fill factor (FF) and optimizes charge collection. As the donor content further decreases below 10%
exciton loss by failing to diffuse to the heterojunction dominates the PCE decay. At this situation
molecular doping can mitigate the exciton loss by enhancing the local electric field and inducing entropy gain at heterojunction. At the end of this review
the future directions of molecularly doped ST-OSCs are briefly discussed
including the doping efficiency
bipolar doping
and high doping concentration achievement.
Müller S. ; Kube S. Organic photovoltaics-truly green energy: "Ultra-low carbon footprint ". Heliatek , 2023 . https://www.heliatek.com/en/technology/sustainability
Wang D. ; Li Y. H. ; Zhou G. Q. ; Gu E. ; Xia R. X. ; Yan B. Y. ; Yao J. Z. ; Zhu H. M. ; Lu X. H. ; Yip H. L. ; Chen H. Z. ; Li C. Z. High-performance see-through power windows . Energy Environ. Sci. , 2022 , 15 ( 6 ), 2629 - 2637 . doi: 10.1039/d2ee00977c http://dx.doi.org/10.1039/d2ee00977c
Burgués-Ceballos I. ; Lucera L. ; Tiwana P. ; Ocytko K. ; Tan L. W. ; Kowalski S. ; Snow J. ; Pron A. ; Bürckstümmer H. ; Blouin N. ; Morse G. Transparent organic photovoltaics: a strategic niche to advance commercialization . Joule , 2021 , 5 ( 9 ), 2261 - 2272 . doi: 10.1016/j.joule.2021.07.004 http://dx.doi.org/10.1016/j.joule.2021.07.004
Wang L. ; Chen C. ; Gan Z. R. ; Cheng J. C. ; Sun Y. D. ; Zhou J. ; Xia W. Y. ; Liu D. ; Li W. ; Wang T. Diluted ternary heterojunctions to suppress charge recombination for organic solar cells with 21% efficiency . Adv. Mater. , 2025 , 37 ( 13 ), e 2419923 . doi: 10.1002/adma.202419923 http://dx.doi.org/10.1002/adma.202419923
Li Y. X. ; Huang X. J. ; Sheriff H. K. M. ; Forrest S. R. Semitransparent organic photovoltaics for building-integrated photovoltaic applications . Nat. Rev. Mater. , 2022 , 8 ( 3 ), 186 - 201 . doi: 10.1038/s41578-022-00514-0 http://dx.doi.org/10.1038/s41578-022-00514-0
李耀凯 , 关诗陶 , 李水兴 , 左立见 , 陈红征 . 超96%近红外光隔热率的高性能半透明有机太阳能电池 . 高分子学报 , 2024 , 55 ( 9 ), 1134 - 1144 .
Liu X. ; Zhong Z. P. ; Zhu R. H. ; Yu J. S. ; Li G. Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics . Joule , 2022 , 6 ( 8 ), 1918 - 1930 . doi: 10.1016/j.joule.2022.06.009 http://dx.doi.org/10.1016/j.joule.2022.06.009
Liu F. ; Zhou Z. C. ; Zhang C. ; Zhang J. Y. ; Hu Q. ; Vergote T. ; Liu F. ; Russell T. P. ; Zhu X. Z. Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor . Adv. Mater. , 2017 , 29 ( 21 ), 1606574 . doi: 10.1002/adma.201606574 http://dx.doi.org/10.1002/adma.201606574
Liu W. Y. ; Sun S. M. ; Xu S. J. ; Zhang H. ; Zheng Y. Q. ; Wei Z. X. ; Zhu X. Z. Theory-guided material design enabling high-performance multifunctional semitransparent organic photovoltaics without optical modulations . Adv. Mater. , 2022 , 34 ( 18 ), e 2200337 . doi: 10.1002/adma.202200337 http://dx.doi.org/10.1002/adma.202200337
Li Y. K. ; He C. L. ; Zuo L. J. ; Zhao F. ; Zhan L. L. ; Li X. ; Xia R. X. ; Yip H. L. ; Li C.-Z. ; Liu X. ; Chen H. Z. High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity . Adv. Energy Mater. , 2021 , 11 ( 11 ), 2003408 . doi: 10.1002/aenm.202003408 http://dx.doi.org/10.1002/aenm.202003408
Ding J. ; Mou H. ; Chen H. ; Xu J. ; Sun W. ; Zhu J. ; Wang Y. ; Huang Y. ; Li Y. ; Li Y. Manipulating molecular stacking for semitransparent organic photovoltaics achieving light utilization efficiency >6 . Adv Mater , 2025 , e 2420439 . doi: 10.1002/adma.202420439 http://dx.doi.org/10.1002/adma.202420439
Meng R. Q. ; Jiang Q. Q. ; Liu D. Y. Balancing efficiency and transparency in organic transparent photovoltaics . NPJ Flex. Electron. , 2022 , 6 , 39 . doi: 10.1038/s41528-022-00173-9 http://dx.doi.org/10.1038/s41528-022-00173-9
Hu Z. H. ; Wang Z. ; Zhang F. J. Semitransparent polymer solar cells with 9.06% efficiency and 27.1% average visible transmittance obtained by employing a smart strategy . J. Mater. Chem. A , 2019 , 7 ( 12 ), 7025 - 7032 . doi: 10.1039/C9TA00907H http://dx.doi.org/10.1039/C9TA00907H
Xie Y. H. ; Cui Y. ; Paraschuk D. Y. ; Ma W. ; Yan H. Why does Y6 with bulk charge photogeneration and bipolar charge transport properties still fail in non-heterojunction organic photovoltaics? J. Mater. Chem. A , 2024 , 12 ( 42 ), 29000 - 29008 . doi: 10.1039/D4TA05438E http://dx.doi.org/10.1039/D4TA05438E
Méndez H. ; Heimel G. ; Winkler S. ; Frisch J. ; Opitz A. ; Sauer K. ; Wegner B. ; Oehzelt M. ; Röthel C. ; Duhm S. ; Többens D. ; Koch N. ; Salzmann I. Charge-transfer crystallites as molecular electrical dopants . Nat. Commun. , 2015 , 6 , 8560 . doi: 10.1038/ncomms9560 http://dx.doi.org/10.1038/ncomms9560
Zhang Y. ; Zhou H. Q. ; Seifter J. ; Ying L. ; Mikhailovsky A. ; Heeger A. J. ; Bazan G. C. ; Nguyen T. Q. Molecular doping enhances photoconductivity in polymer bulk heterojunction solar cells . Adv. Mater. , 2013 , 25 ( 48 ), 7038 - 7044 . doi: 10.1002/adma.201302159 http://dx.doi.org/10.1002/adma.201302159
Liu C. Y. ; Li Z. Q. ; Zhang Z. H. ; Zhang X. Y. ; Shen L. ; Guo W. B. ; Zhang L. ; Long Y. B. ; Ruan S. P. Improving the charge carrier transport of organic solar cells by incorporating a deep energy level molecule . Phys. Chem. Chem. Phys. , 2017 , 19 ( 1 ), 245 - 250 . doi: 10.1039/c6cp07344a http://dx.doi.org/10.1039/c6cp07344a
Han X. Y. ; Wu Z. W. ; Sun B. Q. Enhanced performance of inverted organic solar cell by a solution-based fluorinated acceptor doped P 3HT: PCBM layer. Org. Electron. , 2013 , 14 ( 4 ), 1116 - 1121 . doi: 10.1016/j.orgel.2013.01.031 http://dx.doi.org/10.1016/j.orgel.2013.01.031
Yurash B. ; Cao D. X. ; Brus V. V. ; Leifert D. ; Wang M. ; Dixon A. ; Seifrid M. ; Mansour A. E. ; Lungwitz D. ; Liu T. ; Santiago P. J. ; Graham K. R. ; Koch N. ; Bazan G. C. ; Nguyen T. Q. Towards understanding the doping mechanism of organic semiconductors by Lewis acids . Nat. Mater. , 2019 , 18 ( 12 ), 1327 - 1334 . doi: 10.1038/s41563-019-0479-0 http://dx.doi.org/10.1038/s41563-019-0479-0
Yan H. ; Chen J. Y. ; Zhou K. ; Tang Y. B. ; Meng X. Y. ; Xu X. B. ; Ma W. Lewis acid doping induced synergistic effects on electronic and morphological structure for donor and acceptor in polymer solar cells . Adv. Energy Mater. , 2018 , 8 ( 19 ), 1703672 . doi: 10.1002/aenm.201703672 http://dx.doi.org/10.1002/aenm.201703672
Guo J. ; Liu Y. ; Chen P. G. ; Wang X. H. ; Wang Y. P. ; Guo J. ; Qiu X. C. ; Zeng Z. B. ; Jiang L. ; Yi Y. P. ; Watanabe S. ; Liao L. ; Bai Y. G. ; Nguyen T. Q. ; Hu Y. Y. Revealing the electrophilic-attack doping mechanism for efficient and universal p-doping of organic semiconductors . Adv. Sci. , 2022 , 9 ( 32 ), e 2203111 . doi: 10.1002/advs.202203111 http://dx.doi.org/10.1002/advs.202203111
Xue F. ; Xie Y. H. ; Cui Y. ; Yu ParaschukD ; Ma W. ; Yan H. Boosting fill factor of semitransparent donor-poor organic solar cells for the best light utilization efficiency . Adv. Funct. Mater. , 2025 , 35 ( 8 ), 2415617 . doi: 10.1002/adfm.202415617 http://dx.doi.org/10.1002/adfm.202415617
Wei P. ; Oh J. H. ; Dong G. F. ; Bao Z. N. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors . J. Am. Chem. Soc. , 2010 , 132 ( 26 ), 8852 - 8853 . doi: 10.1021/ja103173m http://dx.doi.org/10.1021/ja103173m
Naab B. D. ; Guo S. ; Olthof S. ; Evans E. G. B. ; Wei P. ; Millhauser G. L. ; Kahn A. ; Barlow S. ; Marder S. R. ; Bao Z. N. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives . J. Am. Chem. Soc. , 2013 , 135 ( 40 ), 15018 - 15025 . doi: 10.1021/ja403906d http://dx.doi.org/10.1021/ja403906d
Li D. Q. ; Geng F. S. ; Hao T. Y. ; Chen Z. ; Wu H. B. ; Ma Z. F. ; Xue Q. F. ; Lin L. N. ; Huang R. ; Leng S. F. ; Hu B. W. ; Liu X. J. ; Wang J. ; Zhu H. M. ; Lv M. L. ; Ding L. M. ; Fahlman M. ; Bao Q. Y. ; Li Y. F. N-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency . Nano Energy , 2022 , 96 , 107133 . doi: 10.1016/j.nanoen.2022.107133 http://dx.doi.org/10.1016/j.nanoen.2022.107133
Ling Z. H. ; Nugraha M. I. ; Hadmojo W. T. ; Lin Y. B. ; Jeong S. Y. ; Yengel E. ; Faber H. ; Tang H. ; Laquai F. ; Emwas A. H. ; Chang X. M. ; Maksudov T. ; Gedda M. ; Woo H. Y. ; McCulloch I. ; Heeney M. ; Tsetseris L. ; Anthopoulos T. D. Over 19% efficiency in ternary organic solar cells enabled by n-type dopants . ACS Energy Lett. , 2023 , 8 ( 10 ), 4104 - 4112 . doi: 10.1021/acsenergylett.3c01254 http://dx.doi.org/10.1021/acsenergylett.3c01254
Xu Y. L. ; Yuan J. Y. ; Sun J. X. ; Zhang Y. N. ; Ling X. F. ; Wu H. H. ; Zhang G. B. ; Chen J. M. ; Wang Y. J. ; Ma W. L. Widely applicable n-type molecular doping for enhanced photovoltaic performance of all-polymer solar cells . ACS Appl. Mater. Interfaces , 2018 , 10 ( 3 ), 2776 - 2784 . doi: 10.1021/acsami.7b15000 http://dx.doi.org/10.1021/acsami.7b15000
Tang Y. B. ; Lin B. J. ; Zhao H. Z. ; Li T. ; Ma W. ; Yan H. Significance of dopant/component miscibility to efficient N-doping in polymer solar cells . ACS Appl. Mater. Interfaces , 2020 , 12 ( 11 ), 13021 - 13028 . doi: 10.1021/acsami.9b21252 http://dx.doi.org/10.1021/acsami.9b21252
Chen Z. Y. ; Tang Y. B. ; Lin B. J. ; Zhao H. Z. ; Li T. ; Min T. ; Yan H. ; Ma W. Probe and control of the tiny amounts of dopants in BHJ film enable higher performance of polymer solar cells . ACS Appl. Mater. Interfaces , 2020 , 12 ( 22 ), 25115 - 25124 . doi: 10.1021/acsami.0c06127 http://dx.doi.org/10.1021/acsami.0c06127
Zhang H. ; Zhang X. N. ; Li Y. X. ; Huang G. S. ; Du W. N. ; Shi J. W. ; Wang B. X. ; Li S. L. ; Jiang T. Z. ; Zhang J. Q. ; Cheng Q. ; Chen J. Y. ; Han B. ; Liu X. F. ; Zhang Y. ; Zhou H. Q. Interfacial molecular doping at donor and acceptor interface in bilayer organic solar cells . Sol. RRL , 2022 , 6 ( 6 ), 2101096 . doi: 10.1002/solr.202101096 http://dx.doi.org/10.1002/solr.202101096
Xie J. Q. ; Lin W. H. ; Wang D. K. ; Lu Z. H. ; Zheng K. B. ; Liang Z. Q. Sequentially N -doped acceptor primer layer facilitates electron collection of inverted non-fullerene organic solar cells . Adv. Funct. Mater. , 2024 , 34 ( 9 ), 2309511 . doi: 10.1002/adfm.202309511 http://dx.doi.org/10.1002/adfm.202309511
Xie M. L. ; Zhu L. Y. ; Zhang J. Q. ; Wang T. ; Li Y. W. ; Zhang W. C. ; Fu Z. ; Zhao G. H. ; Hao X. T. ; Lin Y. Z. ; Zhou H. Q. ; Wei Z. X. ; Lu K. Effective N-doping of non-fullerene acceptor via sequential deposition enables high-efficiency organic solar cells . Adv. Energy Mater. , 2024 , 14 ( 24 ), 2400214 . doi: 10.1002/aenm.202400214 http://dx.doi.org/10.1002/aenm.202400214
Xue W. Y. ; Liang Z. Z. ; Tang Y. B. ; Zhao C. ; Yan L. H. ; Ma W. ; Yan H. Solid solvation assisted electrical doping conserves high-performance in 500 nm active layer organic solar cells . Adv. Funct. Mater. , 2023 , 33 ( 42 ), 2304960 . doi: 10.1002/adfm.202304960 http://dx.doi.org/10.1002/adfm.202304960
Cui Y. ; Xue W. Y. ; Jiang B. X. ; Zahmatkeshsaredorahi A. ; Lu G. H. ; Ma W. ; Yan H. Suppressing the blend morphology led intrinsic defects in organic photovoltaics towards undersea application . Nano Energy , 2025 , 136 , 110773 . doi: 10.1016/j.nanoen.2025.110773 http://dx.doi.org/10.1016/j.nanoen.2025.110773
Tang Y. B. ; Zheng H. ; Zhou X. B. ; Tang Z. ; Ma W. ; Yan H. Molecular doping increases the semitransparent photovoltaic performance of dilute bulk heterojunction film with discontinuous polymer donor networks . Small Methods , 2022 , 6 ( 4 ), e 2101570 . doi: 10.1002/smtd.202101570 http://dx.doi.org/10.1002/smtd.202101570
Scaccabarozzi A. D. ; Basu A. ; Aniés F. ; Liu J. ; Zapata-Arteaga O. ; Warren R. ; Firdaus Y. ; Nugraha M. I. ; Lin Y. B. ; Campoy-Quiles M. ; Koch N. ; Müller C. ; Tsetseris L. ; Heeney M. ; Anthopoulos T. D. Doping approaches for organic semiconductors . Chem. Rev. , 2022 , 122 ( 4 ), 4420 - 4492 . doi: 10.1021/acs.chemrev.1c00581 http://dx.doi.org/10.1021/acs.chemrev.1c00581
Lüssem B. ; Keum C. M. ; Kasemann D. ; Naab B. ; Bao Z. N. ; Leo K. Doped organic transistors . Chem. Rev. , 2016 , 116 ( 22 ), 13714 - 13751 . doi: 10.1021/acs.chemrev.6b00329 http://dx.doi.org/10.1021/acs.chemrev.6b00329
Xie J. Q. ; Lin W. H. ; Zheng K. B. ; Liang Z. Q. N -doping donor-dilute semitransparent organic solar cells to weaken donor: acceptor miscibility and consolidate donor-phase continuity . Adv. Sci. , 2024 , 11 ( 31 ), 2404135 . doi: 10.1002/advs.202404135 http://dx.doi.org/10.1002/advs.202404135
Jiang D. N. ; Wang D. ; Chen M. ; Zhou G. Q. ; Liu Z. X. ; Li X. ; Zhu H. M. ; Li H. Y. ; Chen H. Z. ; Li C. Z. Controllable anion doping of electron acceptors for high-efficiency organic solar cells . ACS Energy Lett. , 2022 , 7 ( 5 ), 1764 - 1773 . doi: 10.1021/acsenergylett.2c00476 http://dx.doi.org/10.1021/acsenergylett.2c00476
Shang Z. R. ; Heumueller T. ; Prasanna R. ; Burkhard G. F. ; Naab B. D. ; Bao Z. N. ; McGehee M. D. ; Salleo A. Trade-off between trap filling, trap creation, and charge recombination results in performance increase at ultralow doping levels in bulk heterojunction solar cells . Adv. Energy Mater. , 2016 , 6 ( 24 ), 1601149 . doi: 10.1002/aenm.201601149 http://dx.doi.org/10.1002/aenm.201601149
Stelzl F. F. ; Würfel U. Modeling the influence of doping on the performance of bulk heterojunction organic solar cells: one-dimensional effective semiconductor versus two-dimensional donor/acceptor model . Phys. Rev. B , 2012 , 86 ( 7 ), 075315 . doi: 10.1103/physrevb.86.075315 http://dx.doi.org/10.1103/physrevb.86.075315
Cui Y. ; Zhao C. ; Souza J. P. A. ; Benatto L. ; Koehler M. ; Ma W. ; Yan H. Eliminating the imbalanced mobility bottlenecks via reshaping internal potential distribution in organic photovoltaics . Adv. Sci. , 2023 , 10 ( 29 ), e 2302880 . doi: 10.1002/advs.202302880 http://dx.doi.org/10.1002/advs.202302880
Menke S. M. ; Luhman W. A. ; Holmes R. J. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency . Nat. Mater. , 2012 , 12 ( 2 ), 152 - 157 . doi: 10.1038/nmat3467 http://dx.doi.org/10.1038/nmat3467
Menke S. M. ; Holmes R. J. Exciton diffusion in organic photovoltaic cells . Energy Environ. Sci. , 2014 , 7 ( 2 ), 499 - 512 . doi: 10.1039/c3ee42444h http://dx.doi.org/10.1039/c3ee42444h
Yan H. ; Tang Y. B. ; Sui X. Y. ; Liu Y. C. ; Gao B. W. ; Liu X. F. ; Liu S. F. ; Hou J. H. ; Ma W. Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions . ACS Energy Lett. , 2019 , 4 ( 6 ), 1356 - 1363 . doi: 10.1021/acsenergylett.9b00843 http://dx.doi.org/10.1021/acsenergylett.9b00843
Xue W. Y. ; Tang Y. B. ; Zhou X. B. ; Tang Z. ; Zhao H. Z. ; Li T. ; Zhang L. ; Liu S. F. ; Zhao C. ; Ma W. ; Yan H. Identifying the electrostatic and entropy-related mechanisms for charge-transfer exciton dissociation at doped organic heterojunctions . Adv. Funct. Mater. , 2021 , 31 ( 25 ), 2101892 . doi: 10.1002/adfm.202101892 http://dx.doi.org/10.1002/adfm.202101892
Xue W. Y. ; Zhang Z. Q. ; So S. K. ; Song Y. ; Wei Z. X. ; Ma W. ; Yan H. Reducing the excitonic loss at donor/acceptor heterojunction with negligible exciton dissociation driving force . ACS Appl. Energy Mater. , 2022 , 5 ( 8 ), 9929 - 9937 . doi: 10.1021/acsaem.2c01601 http://dx.doi.org/10.1021/acsaem.2c01601
Xie J. Q. ; Lin W. H. ; Bazan G. C. ; Pullerits T. ; Zheng K. B. ; Liang Z. Q. N-doping of nonfullerene bulk-heterojunction organic solar cells strengthens photogeneration and exciton dissociation . J. Mater. Chem. A , 2022 , 10 ( 36 ), 18845 - 18855 . doi: 10.1039/d2ta05078a http://dx.doi.org/10.1039/d2ta05078a
Price M. B. ; Hume P. A. ; Ilina A. ; Wagner I. ; Tamming R. R. ; Thorn K. E. ; Jiao W. T. ; Goldingay A. ; Conaghan P. J. ; Lakhwani G. ; Davis N. J. L. K. ; Wang Y. F. ; Xue P. Y. ; Lu H. ; Chen K. ; Zhan X. W. ; Hodgkiss J. M. Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor . Nat. Commun. , 2022 , 13 ( 1 ), 2827 . doi: 10.1038/s41467-022-30127-8 http://dx.doi.org/10.1038/s41467-022-30127-8
Hodgkiss J. M. Frontiers in solar photovoltaic materials . JACS Au , 2024 , 4 ( 9 ), 3321 - 3322 . doi: 10.1021/jacsau.4c00771 http://dx.doi.org/10.1021/jacsau.4c00771
Tang Y. B. ; Zheng H. ; Zhou X. B. ; Tang Z. ; Ma W. ; Yan H. N-dopants optimize the utilization of spontaneously formed photocharges in organic solar cells . Energy Environ. Sci. , 2023 , 16 ( 2 ), 653 - 662 . doi: 10.1039/d2ee03612f http://dx.doi.org/10.1039/d2ee03612f
Tang Y. B. ; Cui Y. ; Zhang R. ; Xue W. Y. ; Ma W. ; Yan H. Identifying and amplifying the spontaneously formed photo-charge contribution in opaque and semitransparent organic photovoltaics . Adv. Energy Mater. , 2024 , 14 ( 13 ), 2303799 . doi: 10.1002/aenm.202303799 http://dx.doi.org/10.1002/aenm.202303799
Yamashita Y. ; Tsurumi J. ; Ohno M. ; Fujimoto R. ; Kumagai S. ; Kurosawa T. ; Okamoto T. ; Takeya J. ; Watanabe S. Efficient molecular doping of polymeric semiconductors driven by anion exchange . Nature , 2019 , 572 ( 7771 ), 634 - 638 . doi: 10.1038/s41586-019-1504-9 http://dx.doi.org/10.1038/s41586-019-1504-9
Jacobs I. E. ; Lin Y. ; Huang Y. X. ; Ren X. L. ; Simatos D. ; Chen C. ; Tjhe D. ; Statz M. ; Lai L. L. ; Finn P. A. ; Neal W. G. ; D'Avino G. ; Lemaur V. ; Fratini S. ; Beljonne D. ; Strzalka J. ; Nielsen C. B. ; Barlow S. ; Marder S. R. ; McCulloch I. ; Sirringhaus H. High-efficiency ion-exchange doping of conducting polymers . Adv. Mater. , 2022 , 34 ( 22 ), e 2102988 . doi: 10.1002/adma.202102988 http://dx.doi.org/10.1002/adma.202102988
Jacobs I. E. ; D'Avino G. ; Lemaur V. ; Lin Y. ; Huang Y. X. ; Chen C. ; Harrelson T. F. ; Wood W. ; Spalek L. J. ; Mustafa T. ; O'Keefe C. A. ; Ren X. L. ; Simatos D. ; Tjhe D. ; Statz M. ; Strzalka J. W. ; Lee J. K. ; McCulloch I. ; Fratini S. ; Beljonne D. ; Sirringhaus H. Structural and dynamic disorder, not ionic trapping, controls charge transport in highly doped conducting polymers . J. Am. Chem. Soc. , 2022 , 144 ( 7 ), 3005 - 3019 . doi: 10.1021/jacs.1c10651 http://dx.doi.org/10.1021/jacs.1c10651
Ishii M. ; Yamashita Y. ; Watanabe S. ; Ariga K. ; Takeya J. Doping of molecular semiconductors through proton-coupled electron transfer . Nature , 2023 , 622 ( 7982 ), 285 - 291 . doi: 10.1038/s41586-023-06504-8 http://dx.doi.org/10.1038/s41586-023-06504-8
Yamashita Y. ; Kohno S. ; Longhi E. ; Jhulki S. ; Kumagai S. ; Barlow S. ; Marder S. R. ; Takeya J. ; Watanabe S. N-type molecular doping of a semicrystalline conjugated polymer through cation exchange . Commun. Mater. , 2024 , 5 , 79 . doi: 10.1038/s43246-024-00507-2 http://dx.doi.org/10.1038/s43246-024-00507-2
Jin W. L. ; Yang C. Y. ; Pau R. ; Wang Q. Q. ; Tekelenburg E. K. ; Wu H. Y. ; Wu Z. A. ; Jeong S. Y. ; Pitzalis F. ; Liu T. F. ; He Q. ; Li Q. F. ; Huang J. D. ; Kroon R. ; Heeney M. ; Woo H. Y. ; Mura A. ; Motta A. ; Facchetti A. ; Fahlman M. ; Loi M. A. ; Fabiano S. Photocatalytic doping of organic semiconductors . Nature , 2024 , 630 ( 8015 ), 96 - 101 . doi: 10.1038/s41586-024-07400-5 http://dx.doi.org/10.1038/s41586-024-07400-5
Guo H. ; Yang C. Y. ; Zhang X. H. ; Motta A. ; Feng K. ; Xia Y. ; Shi Y. Q. ; Wu Z. A. ; Yang K. ; Chen J. H. ; Liao Q. G. ; Tang Y. M. ; Sun H. L. ; Woo H. Y. ; Fabiano S. ; Facchetti A. ; Guo X. G. Transition metal-catalysed molecular n-doping of organic semiconductors . Nature , 2021 , 599 ( 7883 ), 67 - 73 . doi: 10.1038/s41586-021-03942-0 http://dx.doi.org/10.1038/s41586-021-03942-0
Stoeckel M. A. ; Feng K. ; Yang C. Y. ; Liu X. J. ; Li Q. F. ; Liu T. F. ; Jeong S. Y. ; Woo H. Y. ; Yao Y. ; Fahlman M. ; Marks T. J. ; Sharma S. ; Motta A. ; Guo X. G. ; Fabiano S. ; Facchetti A. On-demand catalysed n-doping of organic semiconductors . Angew. Chem. Int. Ed , 2024 , 63 ( 33 ), e 202407273 . doi: 10.1002/anie.202407273 http://dx.doi.org/10.1002/anie.202407273
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构