浏览全部资源
扫码关注微信
大连理工大学化工学院高分子材料系 精细化工国家重点实验室 大连 116024
E-mail: lengxuefei@dlut.edu.cn
E-mail: liyang@dlut.edu.cn
收稿日期:2025-03-07,
录用日期:2025-05-11,
网络出版日期:2025-06-15,
移动端阅览
王薇茜, 冷雪菲, 刘佳, 王艳色, 李杨. 以咖啡酸衍生物合成生物基聚苯乙烯的结构与性能探究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25064
Wang, W. X.; Leng, X. F.; Liu, J.; Wang, Y. S.; Li, Y. Synthesis and structure-property relationships of bio-based polystyrene derived from caffeic acid derivatives. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25064
王薇茜, 冷雪菲, 刘佳, 王艳色, 李杨. 以咖啡酸衍生物合成生物基聚苯乙烯的结构与性能探究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25064 DOI: CSTR: 32057.14.GFZXB.2025.7415.
Wang, W. X.; Leng, X. F.; Liu, J.; Wang, Y. S.; Li, Y. Synthesis and structure-property relationships of bio-based polystyrene derived from caffeic acid derivatives. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25064 DOI: CSTR: 32057.14.GFZXB.2025.7415.
以生物质来源咖啡酸(CA)作为原料,经脱羧和酚羟基保护,一锅法制备了两种生物基咖啡酸衍生物,再采用自由基本体聚合方法,将苯乙烯分别与这两种单体合成了一系列生物基替代的聚苯乙烯新材料. 系统研究了两种单体与苯乙烯自由基共聚的机理,同时采用Materials Studio软件研究了取代基种类和组分含量对共聚物微观结构和宏观性能的影响. 开发出的两类生物基聚苯乙烯具有不同的性能,其中一类的拉伸强度达76.5 MPa且断裂伸长率为10.1%,比传统聚苯乙烯的拉伸强度和断裂伸长率分别提高了35.4%和102%;另一类的拉伸强度为37.2 MPa且断裂伸长率为39.5%,其应力应变曲线出现屈服,比传统聚苯乙烯的断裂伸长率提高690 %. 结果表明,咖啡酸衍生物单体自身含有邻苯二酚官能团,通过设计咖啡酸衍生物的保护基团不仅可以调控其性能以拓展其应用范围,而且可以引入特定官能团制造具有特殊功能性的高性能聚合物材料.
Using biomass-derived caffeic acid (CA) as the raw material
two bio-based caffeic acid derivatives were synthesized via a one-pot decarboxylation and phenolic hydroxyl protection strategy. These derivatives were then copolymerized with styrene through free radical bulk polymerization to develop a series of bio-based polystyrene alternatives. This study systematically investigated the mechanism of free radical copolymerization between the two monomers and styrene
while employing Materials Studio simulations to analyze the effects of substituent group types and composition ratios on the copolymers' microstructure and macroscopic properties. The developed bio-based polystyrene materials exhibited distinct performance characteristics: (1) high-strength copolymer: The copolymer synthesized with Ac
2
VC monomer achieved a tensile strength of 76.5 MPa and an elongation at break of 10.1%
representing 35.4% and 102% improvements
respectively
over conventional polystyrene; (2) high-ductility copolymer: The copolymer derived from TBS
2
VC monomer demonstrated a tensile strength of 37.2 MPa and a remarkable elongation at break of 39.5%
with a yield point observed in its stress-strain curve. This corresponds to a 690% enhancement in elongation compared to traditional polystyrene. Key findings highlight that the intrinsic catechol functional groups in caffeic acid derivatives play a pivotal role in material performance. By strategically designing protective groups (
e.g
.
acetyl or tert-butyldimethylsilyl)
the properties of the copolymers can be precisely tailored to expand their applications. Moreover
this approach enables the introduction of specific functionalities (
e.g.
enhanced thermal stability
tunable mechanical behavior) for creating high-performance polymeric materials. This work demonstrates a sustainable pathway to replace petroleum-based pol
ystyrene with bio-based alternatives
offering both performance superiority (
e.g.
adjustable glass transition temperature
balanced strength-ductility) and functional versatility through rational molecular design. The integration of experimental synthesis and computational modeling provides a robust framework for advancing bio-based polymers toward practical industrial applications.
Kriauss D. M. Modern styrenic polymers: polystyrenes and styrenic copolymers (book) . J. Am. Chem. Soc , 2004 , 126 ( 14 ), 4741 - 4746 .
Geyer R. ; Jambeck J. R. ; Law K. L. Production, use, and fate of all plastics ever made . Sci. Adv. , 2017 , 3 ( 7 ), e 1700782 . doi: 10.1126/sciadv.1700782 http://dx.doi.org/10.1126/sciadv.1700782
Kruse T. M. ; Woo O. S. ; Wong H. W. ; Khan S. S. ; Broadbelt L. J. Mechanistic modeling of polymer degradation: a comprehensive study of polystyrene . Macromolecules , 2002 , 35 ( 20 ), 7830 - 7844 . doi: 10.1021/ma020490a http://dx.doi.org/10.1021/ma020490a
Chu S. ; Majumdar A. Opportunities and challenges for a sustainable energy future . Nature , 2012 , 488 ( 7411 ), 294 - 303 . doi: 10.1038/nature11475 http://dx.doi.org/10.1038/nature11475
Zhang X. Y. ; Zhang L. L. ; Fan Y. M. ; Wang Z. G. The case-dependent lignin role in lignocellulose nanofibers preparation and functional application-a review . Green Energy Environ. , 2023 , 8 ( 6 ), 1553 - 1566 . doi: 10.1016/j.gee.2022.09.008 http://dx.doi.org/10.1016/j.gee.2022.09.008
del Río J. C. ; Rencoret J. ; Gutiérrez A. ; Elder T. ; Kim H. ; Ralph J. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall . ACS Sustainable Chem. Eng. , 2020 , 8 ( 13 ), 4997 - 5012 . doi: 10.1021/acssuschemeng.0c01109 http://dx.doi.org/10.1021/acssuschemeng.0c01109
Zhang Y. ; Du H. L. ; Zhu M. X. ; Li J. Y. ; Zou D. P. ; Wu Y. J. ; Wu Y. S. Copper-catalyzed decarboxylative trifluoroethylation of cinnamic acids . Tetrahedron Lett. , 2017 , 58 ( 9 ), 880 - 883 . doi: 10.1016/j.tetlet.2017.01.060 http://dx.doi.org/10.1016/j.tetlet.2017.01.060
Tanizaki S. ; Kubo T. ; Satoh K. Novel bio-based catechol-containing copolymers by precision polymerization of caffeic acid-derived styrenes using ester protection . Macromol. Chem. Phys. , 2022 , 223 ( 12 ), 2100378 . doi: 10.1002/macp.202270024 http://dx.doi.org/10.1002/macp.202270024
Petermeier P. ; Bittner J. P. ; Müller S. ; Byström E. ; Kara S. Design of a green chemoenzymatic cascade for scalable synthesis of bio-based styrene alternatives . Green Chem. , 2022 , 24 ( 18 ), 6889 - 6899 . doi: 10.1039/d2gc01629j http://dx.doi.org/10.1039/d2gc01629j
Takeshima H. ; Satoh K. ; Kamigaito M. Scalable synthesis of bio-based functional styrene: protected vinyl catechol from caffeic acid and controlled radical and anionic polymerizations thereof . ACS Sustainable Chem. Eng. , 2018 , 6 ( 11 ), 13681 - 13686 . doi: 10.1021/acssuschemeng.8b04400 http://dx.doi.org/10.1021/acssuschemeng.8b04400
Takeshima H. ; Satoh K. ; Kamigaito M. Bio-based vinylphenol family: synthesis via decarboxylation of naturally occurring cinnamic acids and living radical polymerization for functionalized polystyrenes . J. Polym. Sci. , 2020 , 58 ( 1 ), 91 - 100 . doi: 10.1002/pola.29453 http://dx.doi.org/10.1002/pola.29453
Arai K. ; Yamaguchi H. ; Saito S. ; Sarashina E. ; Yamamoto T. A kinetic study of bulk thermal polymerization of styrene . J. Chem. Eng. Japan/JCEJ , 1986 , 19 ( 5 ), 413 - 419 . doi: 10.1252/jcej.19.413 http://dx.doi.org/10.1252/jcej.19.413
潘祖仁 . 高分子化学 , 第 5 版. 北京 : 化学工业出版社 , 2011. 132 - 133 .
Lynd N. A. ; Ferrier , R. C. Jr Beckingham , Recommendation for accurate experimental determination of reactivity ratios in chain copolymerization . Macromolecules , 2019 , 52 ( 6 ), 2277 - 2285 . doi: 10.1021/acs.macromol.8b01752 http://dx.doi.org/10.1021/acs.macromol.8b01752
Takahashi K. I. ; Mamitsuka H. ; Tosaka M. ; Zhu N. Y. ; Yamago S. CoPolDB: a copolymerization database for radical polymerization . Polym. Chem. , 2024 , 15 ( 10 ), 965 - 971 . doi: 10.1039/d3py01372c http://dx.doi.org/10.1039/d3py01372c
Creton C. 50th anniversary perspective: Networks and gels: soft but dynamic and tough . Macromolecules , 2017 , 50 ( 21 ), 8297 - 8316 . doi: 10.1021/acs.macromol.7b01698 http://dx.doi.org/10.1021/acs.macromol.7b01698
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构