浏览全部资源
扫码关注微信
1.南京大学 高性能高分子材料与技术教育部重点实验室 南京 210023
2.苏州银炙新材料科技有限公司 苏州 215028
3.南京大学 配位化学国家重点实验室 南京 210023
E-mail: chemzqh@nju.edu.cn
xin.yang@sk-silvermars.com
收稿日期:2025-03-25,
录用日期:2025-05-06,
网络出版日期:2025-06-09,
移动端阅览
黄芷怡, 王琪, 杨欣, 张秋红. 高粘接力聚磷酸胆碱抗凝涂层的制备与性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25079
Huang, Z. Y.; Wang, Q.; Yang, X.; Zhang, Q. H. Preparation and performance of high adhesion poly-phosphorylcholine anticoagulant coating. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25079
黄芷怡, 王琪, 杨欣, 张秋红. 高粘接力聚磷酸胆碱抗凝涂层的制备与性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25079 DOI: CSTR: 32057.14.GFZXB.2025.7411.
Huang, Z. Y.; Wang, Q.; Yang, X.; Zhang, Q. H. Preparation and performance of high adhesion poly-phosphorylcholine anticoagulant coating. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25079 DOI: CSTR: 32057.14.GFZXB.2025.7411.
在血液接触式医疗器械(如体外循环系统、血管支架等)的临床应用中,现有涂层技术面临界面黏附强度与抗凝血性能的协同优化难以兼具的问题. 基于此,本研究开发了一种可交联磷酸胆碱(PC)聚合物涂层,通过分子结构设计同步实现界面强黏附强度与抗凝效果的提升. 采用浸涂/喷涂等涂覆工艺,在基底表面可形成稳定的抗凝涂层. 其分子结构中,磷酸胆碱基团通过模拟细胞膜磷脂双分子层结构赋予材料表面生物惰性,可控交联基团保障涂层界面黏附强度达3.8 MPa (玻璃基底). 动态接触角测试证明涂层表面存在组分自发迁移效应,暴露于血液环境中时,PC基团富集于界面形成仿生屏障. 体外实验表明,该涂层可使凝血时间延长72.5%,溶血率低于5% (符合国家医用材料标准). 细胞毒性评估证实材料符合生物相容性要求. 本研究为解决血液接触器械表面抗凝血改性与界面黏附强度难以兼顾的行业难题提供了思路,在植入式医疗器械领域展现出重要应用价值.
In the clinical application of blood-contacting medical devices (such as extracorporeal circulation systems and vascular stents)
the existing coating technologies face the challenge of simultaneously achieving high interfacial adhesion strength and anticoagulant performance. Based on this
this study developed a crosslink-able phosphorylcholine (PC) polymer coating
which simultaneously enhances interfacial adhesion strength and anticoagulant effect through molecular structure design. The coating can be formed on the substrate surface by dip-coating or spray-coating processes to create a stable anticoagulant coating. In its molecular structure
the phosphocholine group imitates the phospholipid bilayer structure of the cell membrane to make the surface of the material bioinert
and the controllable cross-linked groups ensure the adhesion strength of the coating interface up to 3.8 MPa (glass substrate). The dynamic contact Angle test proved that there was a spontaneous migration effect of components on the surface of the coating. When exposed to the blood environment
PC groups were enriched at the interface to form a bionic barrier.
In vitro
experiments show that the coating can prolong the clotting time by 72.5%
and the hemolysis rate is less than 5% (in line with the national medical material standards). Cytotoxicity assessment confirmed that the material met the biocompatibility requirements. This work provides a way to solve the industry problem that it is difficult to take into account the anticoagulant modification of the surface of blood contact devices and the interface adhesion strength
and shows important application value in the f
ield of implantable medical devices.
Radke D. ; Jia W. K. ; Sharma D. ; Fena K. M. ; Wang G. F. ; Goldman J. ; Zhao F. Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development . Adv. Healthc. Mater. , 2018 , 7 ( 15 ), 1701461 . doi: 10.1002/adhm.201701461 http://dx.doi.org/10.1002/adhm.201701461
von Segesser L. K. ; Weiss B. M. ; Pasic M. ; Garcia E. ; Turina M. I. Risk and benefit of low systemic heparinization during open heart operations . Ann. Thorac. Surg. , 1994 , 58 ( 2 ), 391 - 398 . doi: 10.1016/0003-4975(94)92213-6 http://dx.doi.org/10.1016/0003-4975(94)92213-6
Watson H. ; Davidson S. ; Keeling D. Guidelines on the diagnosis and management of heparin-induced thrombocytopenia: second edition . Br. J. Haematol. , 2012 , 159 ( 5 ), 528 - 540 . doi: 10.1111/bjh.12059 http://dx.doi.org/10.1111/bjh.12059
Meng Q. H. ; Krahn J. Reverse pseudohyperkalemia in heparin plasma samples from a patient with chronic lymphocytic leukemia . Clin. Biochem. , 2011 , 44 ( 8-9 ), 728 - 730 . doi: 10.1016/j.clinbiochem.2011.03.026 http://dx.doi.org/10.1016/j.clinbiochem.2011.03.026
Rajgopal R. ; Bear M. ; Butcher M. K. ; Shaughnessy S. G. The effects of heparin and low molecular weight heparins on bone . Thromb. Res. , 2008 , 122 ( 3 ), 293 - 298 . doi: 10.1016/j.thromres.2006.10.025 http://dx.doi.org/10.1016/j.thromres.2006.10.025
Lyu N. ; Du Z. Y. ; Qiu H. ; Gao P. ; Yao Q. ; Xiong K. Q. ; Tu Q. F. ; Li X. Y. ; Chen B. H. ; Wang M. ; Pan G. Q. ; Huang N. ; Yang Z. L. Mimicking the nitric oxide-releasing and glycocalyx functions of endothelium on vascular stent surfaces . Adv. Sci. , 2020 , 7 ( 21 ), 2002330 . doi: 10.1002/advs.202002330 http://dx.doi.org/10.1002/advs.202002330
McNeely T. B. ; Griffith M. J. The anticoagulant mechanism of action of heparin in contact-activated plasma: inhibition of factor X activation . Blood , 1985 , 65 ( 5 ), 1226 - 1231 . doi: 10.1182/blood.v65.5.1226.bloodjournal6551226 http://dx.doi.org/10.1182/blood.v65.5.1226.bloodjournal6551226
Luo R. F. ; Zhang J. ; Zhuang W. H. ; Deng L. ; Li L. H. ; Yu H. C. ; Wang J. ; Huang N. ; Wang Y. B. Multifunctional coatings that mimic the endothelium: Surface bound active heparin nanoparticles with in situ generation of nitric oxide from nitrosothiols . J. Mater. Chem. B , 2018 , 6 ( 35 ), 5582 - 5595 . doi: 10.1039/c8tb00596f http://dx.doi.org/10.1039/c8tb00596f
Bian Y. X. ; Song D. H. ; Fu Z. J. ; Jiang C. ; Xu C. ; Zhang L. ; Wang K. ; Wang S. J. ; Sun D. P. Carboxyl PEGylation of magnetic nanoparticles as antithrombotic and thrombolytic agents by calcium binding . J. Colloid Interface Sci. , 2023 , 638 , 672 - 685 . doi: 10.1016/j.jcis.2023.01.129 http://dx.doi.org/10.1016/j.jcis.2023.01.129
Yao M. M. ; Sun X. ; Guo Z. C. ; Zhao Z. M. ; Yan Z. J. ; Yao F. L. ; Zhang H. ; Li J. J. Bioinspired zwitterionic microgel-based coating: Controllable microstructure, high stability, and anticoagulant properties . Acta Biomater. , 2022 , 151 , 290 - 303 . doi: 10.1016/j.actbio.2022.08.022 http://dx.doi.org/10.1016/j.actbio.2022.08.022
Kojima M. ; Ishihara K. ; Watanabe A. ; Nakabayashi N. Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety . Biomaterials , 1991 , 12 ( 2 ), 121 - 124 . doi: 10.1016/0142-9612(91)90189-h http://dx.doi.org/10.1016/0142-9612(91)90189-h
Ishihara K. ; Oshida H. ; Endo Y. ; Ueda T. ; Watanabe A. ; Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism . J. Biomed. Mater. Res. , 1992 , 26 ( 12 ), 1543 - 1552 . doi: 10.1002/jbm.820261202 http://dx.doi.org/10.1002/jbm.820261202
He Y. ; Hower J. ; Chen S. F. ; Bernards M. T. ; Chang Y. ; Jiang S. Y. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water . Langmuir , 2008 , 24 ( 18 ), 10358 - 10364 . doi: 10.1021/la8013046 http://dx.doi.org/10.1021/la8013046
Li N. ; Li T. ; Qiao X. Y. ; Li R. ; Yao Y. ; Gong Y. K. Universal strategy for efficient fabrication of blood compatible surfaces via polydopamine-assisted surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization of zwitterions . ACS Appl. Mater. Interfaces , 2020 , 12 ( 10 ), 12337 - 12344 . doi: 10.1021/acsami.9b22574 http://dx.doi.org/10.1021/acsami.9b22574
Chang H. ; Ren K. F. ; Wang J. L. ; Zhang H. ; Wang B. L. ; Zheng S. M. ; Zhou Y. Y. ; Ji J. Surface-mediated functional gene delivery: an effective strategy for enhancing competitiveness of endothelial cells over smooth muscle cells . Biomaterials , 2013 , 34 ( 13 ), 3345 - 3354 . doi: 10.1016/j.biomaterials.2013.01.065 http://dx.doi.org/10.1016/j.biomaterials.2013.01.065
Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites . Science , 1997 , 277 ( 5330 ), 1232 - 1237 . doi: 10.1126/science.277.5330.1232 http://dx.doi.org/10.1126/science.277.5330.1232
Lin Q. K. ; Yan J. J. ; Qiu F. Y. ; Song X. X. ; Fu G. S. ; Ji J. Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent . J. Biomed. Mater. Res. Part A , 2011 , 96 A( 1 ), 132 - 141 . doi: 10.1002/jbm.a.32820 http://dx.doi.org/10.1002/jbm.a.32820
Li M. Y. ; Liu K. P. ; Liu W. Q. ; Chen N. Y. ; Wang Y. N. ; Zhang F. J. ; Luo Q. F. ; Yang L. ; Luo R. F. ; Wang Y. B. A universal anti-thrombotic and antibacterial coating: a chemical approach directed by Fenton reaction and silane coupling . Appl. Surf. Sci. , 2022 , 600 , 154143 . doi: 10.1016/j.apsusc.2022.154143 http://dx.doi.org/10.1016/j.apsusc.2022.154143
Ma J. ; Lin W. F. ; Xu L. B. ; Liu S. H. ; Xue W. L. ; Chen S. F. Resistance to long-term bacterial biofilm formation based on hydrolysis-induced zwitterion material with biodegradable and self-healing properties . Langmuir , 2020 , 36 ( 12 ), 3251 - 3259 . doi: 10.1021/acs.langmuir.0c00006 http://dx.doi.org/10.1021/acs.langmuir.0c00006
Aissaoui N. ; Bergaoui L. ; Landoulsi J. ; Lambert J. F. ; Boujday S. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption . Langmuir , 2012 , 28 ( 1 ), 656 - 665 . doi: 10.1021/la2036778 http://dx.doi.org/10.1021/la2036778
Joos B. ; Kuster H. ; Cone R. Covalent attachment of hybridizable oligonucleotides to glass supports . Anal. Biochem. , 1997 , 247 ( 1 ), 96 - 101 . doi: 10.1006/abio.1997.2017 http://dx.doi.org/10.1006/abio.1997.2017
Shircliff R. A. ; Stradins P. ; Moutinho H. ; Fennell J. ; Ghirardi M. L. ; Cowley S. W. ; Branz H. M. ; Martin I. T. Angle-resolved XPS analysis and characterization of monolayer and multilayer silane films for DNA coupling to silica . Langmuir , 2013 , 29 ( 12 ), 4057 - 4067 . doi: 10.1021/la304719y http://dx.doi.org/10.1021/la304719y
Song R. J. ; Wang X. Y. ; Johnson M. ; Milne C. ; Lesniak-Podsiadlo A. ; Li Y. H. ; Lyu J. ; Li Z. S. ; Zhao C. Y. ; Yang L. Z. ; Lara-Sáez I. ; Sigen A. ; Wang W. X. Enhanced strength for double network hydrogel adhesive through cohesion-adhesion balance . Adv. Funct. Mater. , 2024 , 34 ( 23 ), 2313322 . doi: 10.1002/adfm.202313322 http://dx.doi.org/10.1002/adfm.202313322
0
浏览量
41
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构