浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
E-mail: binwang@tju.edu.cn
收稿日期:2025-04-10,
录用日期:2025-05-23,
网络出版日期:2025-07-23,
移动端阅览
刘伟宁, 王明倩, 丁志强, 王彬. “缩聚-解聚”法合成六元环碳酸酯. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25094
Liu, W. N.; Wang, M. Q.; Ding, Z. Q.; Wang, B. Synthesis of six-membered cyclic carbonates via a polycondensation-depolymerization tandem strategy. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25094
刘伟宁, 王明倩, 丁志强, 王彬. “缩聚-解聚”法合成六元环碳酸酯. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25094 DOI: CSTR: 32057.14.GFZXB.2025.7426.
Liu, W. N.; Wang, M. Q.; Ding, Z. Q.; Wang, B. Synthesis of six-membered cyclic carbonates via a polycondensation-depolymerization tandem strategy. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25094 DOI: CSTR: 32057.14.GFZXB.2025.7426.
脂肪族六元环碳酸酯是一类具有广泛应用前景的单体,可用于合成聚碳酸酯、脂肪族共聚酯以及非异氰酸酯基聚氨酯等功能材料. 针对目前环碳酸酯单体合成效率低、反应条件苛刻的问题,本研究建立了“缩聚-解聚”串联反应合成功能性环碳酸酯单体的新方法. 由1
3-二醇化合物与碳酸二烷基酯缩合聚合制备低分子量聚碳酸酯,然后再经催化解聚转化成六元环碳酸酯单体. 重点考察了不同催化剂对聚碳酸酯解聚行为的影响. 结果表明,Lewis酸的解聚效率较低,碱金属醇盐展现出最优的催化活性,产物收率达94.2%. 研究发现,碱金属醇盐催化的解聚过程遵循无规断链与端基环化机理,受聚合物分子量、投料比和反应温度等因素影响. “缩聚-解聚”法具有良好的官能团耐受性,能够用于合成结构多样的功能性六元环碳酸酯. 本研究将为新型功能性六元环碳酸酯单体的设计、合成及相应聚碳酸酯材料的开发提供实验与理论基础.
Aliphatic six-membered cyclic carbonates are a class of monomers with broad application potential
serving as key precursors in the synthesis of polycarbonates
aliphatic copolyesters
and non-isocyanate polyurethanes. To address the current challenges of low synthetic efficiency and demanding reaction conditions in cyclic carbonate monomer production
this study developed a novel "polycondensation-depolymerization" tandem strategy for the synthesis of functional cyclic carbonate monomers. This method involves the polycondensation of 1
3-diols with dialkyl carbonates to form low-molecular-weight polycarbonates
followed by catalytic depolymerization into six-membered cyclic carbonates. This study systematically investigated the influence of different catalysts on the depolymerization behavior of polycarbonate. The results demonstrate that Lewis acids exhibit low depolymerization efficiency
whereas alkali metal alkoxides exhibit superior catalytic activity with high monomer efficiency (94.2%). Mechanistic studies revealed that alkali metal alkoxide-catalyzed depolymerization follows a random chain scission coupled with an end-group cyclization mechanism
with the reaction efficiency being significantly influenced by the polymer molecular weight
feed ratio
and reaction temperature. The "polycondensation-depolymerization" approach demonstrates excellent functional group tolerance
enabling the synthesis of structurally diverse six-membered cyclic carbonates. This study provides both experimental and theoretical foundations for the design and synthesis of novel functional cyclic carbonate monomers and the development of advanced polycarbonate materials.
Palenzuela M. ; Sarisuta K. ; Navarro M. ; Kumamoto N. ; Chanthaset N. ; Monot J. ; Ajiro H. ; Martín-Vaca B. ; Bourissou D. 5 -methylene-1,3-dioxane-2-one: a first-choice comonomer for trimethylene carbonate . Macromolecules , 2023, 56 ( 2 ), 678 - 689 . doi: 10.1021/acs.macromol.2c02270 http://dx.doi.org/10.1021/acs.macromol.2c02270
Cederholm L. ; Olsén P. ; Hakkarainen M. ; Odelius K. Design for recycling: polyester- and polycarbonate-based A-B-A block copolymers and their recyclability back to monomers . Macromolecules , 2023 , 56 ( 10 ), 3641 - 3649 . doi: 10.1021/acs.macromol.3c00274 http://dx.doi.org/10.1021/acs.macromol.3c00274
Honda, M.; Abe, H. Development of a H 3 PW 12 O 40 /CeO 2 catalyst for bulk ring-opening polymerization of a cyclic carbonate. Green Chem., 2018, 20 ( 21 ), 4995 - 5006 .
Maisonneuve L. ; Lamarzelle O. ; Rix E. ; Grau E. ; Cramail H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s . Chem. Rev. , 2015 , 115 ( 22 ), 12407 - 12439 . doi: 10.1021/acs.chemrev.5b00355 http://dx.doi.org/10.1021/acs.chemrev.5b00355
Gregory G. L. ; Sulley G. S. ; Kimpel J. ; Łagodzińska M. ; Häfele L. ; Carrodeguas L. P. ; Williams C. K. Block poly(carbonate-ester) ionomers as high-performance and recyclable thermoplastic elastomers . Angew. Chem. Int. Ed , 2022 , 61 ( 47 ), e 202210748 . doi: 10.1002/anie.202210748 http://dx.doi.org/10.1002/anie.202210748
Yu W. ; Maynard E. ; Chiaradia V. ; Arno M. C. ; Dove A. P. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials . Chem. Rev. , 2021 , 121 ( 18 ), 10865 - 10907 . doi: 10.1021/acs.chemrev.0c00883 http://dx.doi.org/10.1021/acs.chemrev.0c00883
Chin W. ; Zhong G. S. ; Pu Q. Q. ; Yang C. ; Lou W. Y. ; De Sessions P. F. ; Periaswamy B. ; Lee A. ; Liang Z. C. ; Ding X. ; Gao S. J. ; Chu C. W. ; Bianco S. ; Bao C. ; Tong Y. W. ; Fan W. M. ; Wu M. ; Hedrick J. L. ; Yang Y. Y. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset . Nat. Commun. , 2018 , 9 ( 1 ), 917 . doi: 10.1038/s41467-018-03325-6 http://dx.doi.org/10.1038/s41467-018-03325-6
Hae Cho C. A. ; Liang C. ; Perera J. ; Liu J. ; Varnava K. G. ; Sarojini V. ; Cooney R. P. ; McGillivray D. J. ; Brimble M. A. ; Swift S. ; Jin J. Y. Molecular weight and charge density effects of guanidinylated biodegradable polycarbonates on antimicrobial activity and selectivity . Biomacromolecules , 2018 , 19 ( 5 ), 1389 - 1401 . doi: 10.1021/acs.biomac.7b01245 http://dx.doi.org/10.1021/acs.biomac.7b01245
Zhu W. ; Pyo S. H. ; Wang P. R. ; You S. T. ; Yu C. ; Alido J. ; Liu J. ; Leong Y. ; Chen S. C. Three-dimensional printing of bisphenol A-free polycarbonates . ACS Appl. Mater. Interfaces , 2018 , 10 ( 6 ), 5331 - 5339 . doi: 10.1021/acsami.7b18312 http://dx.doi.org/10.1021/acsami.7b18312
Motta A. C. ; de Miranda Fedrizzi V. ; Barbo M. L. P. ; Duek E. A. R. In vitro and in vivo studies on devices of poly(l-co-d, l lactic acid)-co-TMC for bone repair . Polym. Bull. , 2018 , 75 ( 10 ), 4515 - 4529 . doi: 10.1007/s00289-018-2283-4 http://dx.doi.org/10.1007/s00289-018-2283-4
Jaworska J. ; Jelonek K. ; Wąsik T. J. ; Miklasińska-Majdanik M. ; Kępa M. ; Bratosiewicz-Wąsik J. ; Kaczmarczyk B. ; Marcinkowski A. ; Janeczek H. ; Szewczenko J. ; Kajzer W. ; Musiał-Kulik M. ; Kasperczyk J. Poly(lactide-co-trimethylene carbonate) coatings with ciprofloxacin, fusidic acid and azithromycin . The effect of the drug on the degradation and biological activity against different Staphylococcus reference strains. Eur. Polym. J. , 2021 , 155 , 110579 . doi: 10.1016/j.eurpolymj.2021.110579 http://dx.doi.org/10.1016/j.eurpolymj.2021.110579
Gennen S. ; Grignard B. ; Tassaing T. ; Jérôme C. ; Detrembleur C. CO 2-sourced α-alkylidene cyclic carbonates: a step forward in the quest for functional regioregular poly(urethane)s and poly(carbonate)s. Angew. Chem. Int. Ed , 2017 , 56 ( 35 ), 10394 - 10398 . doi: 10.1002/anie.201704467 http://dx.doi.org/10.1002/anie.201704467
Tan E. W. P. ; Hedrick J. L. ; Arrechea P. L. ; Erdmann T. ; Kiyek V. ; Lottier S. ; Yang Y. Y. ; Park N. H. Overcoming barriers in polycarbonate synthesis: a streamlined approach for the synthesis of cyclic carbonate monomers . Macromolecules , 2021 , 54 ( 4 ), 1767 - 1774 . doi: 10.1021/acs.macromol.0c02880 http://dx.doi.org/10.1021/acs.macromol.0c02880
Fan H. Y. ; Hu C. Y. ; Niu M. X. ; Zhang Q. ; Li B. K. ; Pang X. ; Chen X. S. Modular access from acrylate to a sustainable polyester platform with large-span tunability and chemical circularity under mild conditions . J. Am. Chem. Soc. , 2025 , 147 ( 11 ), 9836 - 9843 . doi: 10.1021/jacs.5c00044 http://dx.doi.org/10.1021/jacs.5c00044
Pratt R. C. ; Nederberg F. ; Waymouth R. M. ; Hedrick J. L. Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization . Chem. Commun. , 2008 ( 1 ), 114 - 116 . doi: 10.1039/b713925j http://dx.doi.org/10.1039/b713925j
Zhang X. J. ; Cai M. M. ; Zhong Z. L. ; Zhuo R. X. A water-soluble polycarbonate with dimethylamino pendant groups prepared by enzyme-catalyzed ring-opening polymerization . Macromol. Rapid Commun. , 2012 , 33 ( 8 ), 693 - 697 . doi: 10.1002/marc.201100765 http://dx.doi.org/10.1002/marc.201100765
García-Gallego S. ; Nyström A. M. ; Malkoch M. Chemistry of multifunctional polymers based on bis-MPA and their cutting-edge applications . Prog. Polym. Sci. , 2015 , 48 , 85 - 110 . doi: 10.1016/j.progpolymsci.2015.04.006 http://dx.doi.org/10.1016/j.progpolymsci.2015.04.006
Olsson J. V. ; Hult D. ; Cai Y. L. ; García-Gallego S. ; Malkoch M. Reactive imidazole intermediates: simplified synthetic approach to functional aliphatic cyclic carbonates . Polym. Chem. , 2014 , 5 ( 23 ), 6651 - 6655 . doi: 10.1039/c4py00911h http://dx.doi.org/10.1039/c4py00911h
Venkataraman S. ; Hedrick J. L. ; Yang Y. Y. Fluorene-functionalized aliphatic polycarbonates: design, synthesis and aqueous self-assembly of amphiphilic block copolymers . Polym. Chem. , 2014 , 5 ( 6 ), 2035 - 2040 . doi: 10.1039/c3py01207g http://dx.doi.org/10.1039/c3py01207g
Gao Z. ; Gao B. ; Meng S. M. ; Yang Z. J. ; Liang Z. Z. ; Sun Z. Q. ; Zhou Y. C. ; Pang X. Synthesis of random, gradient, and block-like terpolycarbonates via one-pot terpolymerization of epoxide , CO 2 , and six-membered cyclic carbonates. Macromolecules, 2023, 56 ( 5 ), 2062 - 2069 . doi: 10.1021/acs.macromol.2c02390 http://dx.doi.org/10.1021/acs.macromol.2c02390
Zhang Q. ; Yuan H. Y. ; Lin X. T. ; Fukaya N. ; Fujitani T. ; Sato K. ; Choi J. C. Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide . Green Chem. , 2020 , 22 ( 13 ), 4231 - 4239 . doi: 10.1039/d0gc01402h http://dx.doi.org/10.1039/d0gc01402h
Tian J. M. ; Hadjichristidis N. ; Wang X. ; Zhang Z. B. A general and mild two-step strategy using bioderived diols and CO 2 for chemically recyclable polycarbonates and closed-loop CO 2 fixation . Angew. Chem. Int. Ed , 2025, 64 ( 19 ), e 202423162 . doi: 10.1002/anie.202423162 http://dx.doi.org/10.1002/anie.202423162
McGuire T. M. ; López-Vidal E. M. ; Gregory G. L. ; Buchard A. Synthesis of 5to- 8-membered cyclic carbonates from diols and CO2: a one-step, atmospheric pressure and ambient temperature procedure. J. CO 2 Util., 2018, 27 , 283 - 288 . doi: 10.1016/j.jcou.2018.08.009 http://dx.doi.org/10.1016/j.jcou.2018.08.009
Hedrick J. L. ; Piunova V. ; Park N. H. ; Erdmann T. ; Arrechea P. L. Simple and efficient synthesis of functionalized cyclic carbonate monomers using carbon dioxide . ACS Macro Lett. , 2022 , 11 ( 3 ), 368 - 375 . doi: 10.1021/acsmacrolett.2c00060 http://dx.doi.org/10.1021/acsmacrolett.2c00060
Rintjema J. ; Guo W. S. ; Martin E. ; Escudero-Adán E. C. ; Kleij A. W. Highly chemoselective catalytic coupling of substituted oxetanes and carbon dioxide . Chem. , 2015 , 21 ( 30 ), 10754 - 10762 . doi: 10.1002/chem.201501576 http://dx.doi.org/10.1002/chem.201501576
Huang J. ; Jehanno C. ; Worch J. C. ; Ruipérez F. ; Sardon H. ; Dove A. P. ; Coulembier O. Selective organocatalytic preparation of trimethylene carbonate from oxetane and carbon dioxide . ACS Catal. , 2020 , 10 ( 10 ), 5399 - 5404 . doi: 10.1021/acscatal.0c00689 http://dx.doi.org/10.1021/acscatal.0c00689
Maeda C. ; Inoue H. ; Ichiki A. ; Okihara T. ; Ema T. Synthesis of trimethylene carbonates and polycarbonates from oxetanes and CO 2 using bifunctional aluminum porphyrin catalysts . ACS Catal. , 2022 , 12 ( 20 ), 13042 - 13049 . doi: 10.1021/acscatal.2c03583 http://dx.doi.org/10.1021/acscatal.2c03583
Zhang C. J. ; Wu S. Q. ; Boopathi S. ; Zhang X. H. ; Hong X. ; Gnanou Y. ; Feng X. S. Versatility of boron-mediated coupling reaction of oxetanes and epoxides with CO 2 : selective synthesis of cyclic carbonates or linear polycarbonates . ACS Sustainable Chem. Eng. , 2020 , 8 ( 34 ), 13056 - 13063 . doi: 10.1021/acssuschemeng.0c04768 http://dx.doi.org/10.1021/acssuschemeng.0c04768
Weng Y. J. ; Hong C. B. ; Zhang Y. L. ; Liu H. C. Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling . Green Chem. , 2024 , 26 ( 2 ), 571 - 592 . doi: 10.1039/d3gc04174c http://dx.doi.org/10.1039/d3gc04174c
Cederholm L. ; Olsén P. ; Hakkarainen M. ; Odelius K. Chemical recycling to monomer: thermodynamic and kinetic control of the ring-closing depolymerization of aliphatic polyesters and polycarbonates . Polym. Chem. , 2023 , 14 ( 28 ), 3270 - 3276 . doi: 10.1039/d3py00535f http://dx.doi.org/10.1039/d3py00535f
Zhang S. B. ; Hu Q. K. ; Zhang Y. X. ; Guo H. Y. ; Wu Y. F. ; Sun M. Z. ; Zhu X. S. ; Zhang J. G. ; Gong S. Y. ; Liu P. ; Niu Z. Q. Depolymerization of polyesters by a binuclear catalyst for plastic recycling . Nat. Sustain. , 2023 , 6 ( 8 ), 965 - 973 . doi: 10.1038/s41893-023-01118-4 http://dx.doi.org/10.1038/s41893-023-01118-4
Li X. L. ; Clarke R. W. ; An H. Y. ; Gowda R. R. ; Jiang J. Y. ; Xu T. Q. ; Chen E. Y. Dual recycling of depolymerization catalyst and biodegradable polyester that markedly outperforms polyolefins . Angew. Chem. Int. Ed , 2023 , 62 ( 26 ), e 202303791 . doi: 10.1002/anie.202303791 http://dx.doi.org/10.1002/anie.202303791
林旭名 , 王明倩 , 傅晓艳 , 丁志强 , 王彬 . 结晶性脂肪族聚碳酸酯催化解聚研究 . 高分子学报 , 2024 , 55 ( 11 ), 1476 - 1486 .
Siragusa F. ; Detrembleur C. ; Grignard B. The advent of recyclable CO 2 -based polycarbonates . Polym. Chem. , 2023 , 14 ( 11 ), 1164 - 1183 . doi: 10.1039/d2py01258h http://dx.doi.org/10.1039/d2py01258h
Carothers W. H. ; Van Natta F. J. Studies on polymerization and ring formation . iii. glycol esters of carbonic acid. J. Am. Chem. Soc. , 1930 , 52 ( 1 ), 314 - 326 . doi: 10.1021/ja01364a045 http://dx.doi.org/10.1021/ja01364a045
Gallin C. F. ; Lee W. W. ; Byers J. A. A simple, selective, and general catalyst for ring closing depolymerization of polyesters and polycarbonates for chemical recycling . Angew. Chem. Int. Ed , 2023 , 62 ( 25 ), e 202303762 . doi: 10.1002/anie.202303762 http://dx.doi.org/10.1002/anie.202303762
Zhao W. C. ; Guo Z. P. ; He J. H. ; Zhang Y. T. Solvent-free chemical recycling of polyesters and polycarbonates by magnesium-based lewis acid catalyst . Angew. Chem. Int. Ed , 2025 , 64 ( 9 ), e 202420688 . doi: 10.1002/anie.202420688 http://dx.doi.org/10.1002/anie.202420688
Zhou L. ; Zhang Z. ; Shi C. X. ; Scoti M. ; Barange D. K. ; Gowda R. R. ; Chen E. Y. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates . Science , 2023 , 380 ( 6640 ), 64 - 69 . doi: 10.1126/science.adg4520 http://dx.doi.org/10.1126/science.adg4520
Shi C. X. ; McGraw M. L. ; Li Z. C. ; Cavallo L. ; Falivene L. ; Chen E. Y. High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability . Sci. Adv. , 2020 , 6 ( 34 ), eabc 0495 . doi: 10.1126/sciadv.abc0495 http://dx.doi.org/10.1126/sciadv.abc0495
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构