浏览全部资源
扫码关注微信
华南理工大学前沿软物质学院 发光材料与器件全国重点实验室 广东省功能与智能杂化材料与 器件重点实验室 广州 510640
[ "岳衎,华南理工大学前沿软物质学院华南软物质科学与技术高等研究院长聘教授、博士生导师. 2008年本科毕业于北京大学元培学院,2013年博士毕业于美国阿克伦大学高分子科学与工程学院,之后在阿克伦大学和哈佛大学医学院布莱根妇女医院从事博士后研究;2017年1月入职华南理工大学开展独立教学研究工作. 主要研究领域为功能性高分子弹性体与凝胶材料的设计、开发及应用. 目前已在国际主流期刊发表SCI论文100余篇,主持2项国家自然科学基金委面上项目和1项重大研究计划培育项目,以及其他10余项省部级项目和企业技术开发项目等. 曾入选中组部海外高层次青年人才项目(2017年)、获华南理工大学本科生教学优秀奖(2020年度)等奖励." ]
[ "郭子豪,男,1986年生. 华南理工大学前沿软物质学院副教授、博士生导师. 2008年于南开大学化学学院获学士学位,2013年于北京大学化学与分子工程学院获博士学位(导师:裴坚教授). 2014~2016年,在美国德州农工大学化学系从事博士后研究工作(合作导师:Lei Fang教授),2016~2018年在美国耶鲁大学环境与化工学院从事博士后研究工作(合作导师:Mingjiang Zhong教授). 2018年入职华南理工大学前沿软物质学院,主要从事共轭聚合物设计、合成及应用和锂电池固态电解质材料的研究." ]
收稿日期:2025-04-20,
录用日期:2025-06-03,
网络出版日期:2025-06-19,
移动端阅览
罗川, 胡利华, 宁春棚, 岳衎, 郭子豪. 固态聚合物电解质的最新研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25106
Luo, C.; Hu, L. H.; Ning, C. P.; Yue, K.; Guo, Z. H. Recent advances in solid-state polymer electrolytes. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25106
罗川, 胡利华, 宁春棚, 岳衎, 郭子豪. 固态聚合物电解质的最新研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25106 DOI: CSTR: 32057.14.GFZXB.2025.7436.
Luo, C.; Hu, L. H.; Ning, C. P.; Yue, K.; Guo, Z. H. Recent advances in solid-state polymer electrolytes. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25106 DOI: CSTR: 32057.14.GFZXB.2025.7436.
具备高能量密度和安全性的全固态电池技术已成为下一代先进储能体系的核心发展方向. 固态聚合物电解质(SPE)因其轻质化特征、成本效益优势、优异加工性能及本质阻燃特性,展现出替代传统液态电解质实现规模化商业应用的潜力. 然而,传统商业化SPE受限于其固有电化学性能缺陷,已难以适配当前高能量密度电池体系对电解质材料的严苛性能要求. 尽管通过杂化改性、共混优化、掺杂调控等物理工艺制备的凝胶电解质及无机复合电解质可部分满足现有锂金属电池(LMB)的应用需求,但开发兼具本征高离子电导率与宽电化学窗口的SPE仍是当前储能材料领域的关键科学命题. 本篇综述简要概述了全固态聚合物领域的最新研究进展,并系统地整理与分类了新型SPE的主流设计策略. 这些策略涵盖多维拓扑结构的设计、阴离子锚定策略、聚合物氟化工程、弱溶剂化主链构筑以及其他创新性设计理念. 各章节分别介绍了基于上述策略研发的新型SPE,并展示了其在LMB里的实际应用表现. 最后,本文为如何设计更安全、电化学性能更优异的SPE提供了个人见解与展望.
The solid-state battery with high energy density and safety has become the popular development direction for the next-generation advanced energy storage systems. Solid-state polymer electrolytes (SPEs) have demonstrated the potential with which to replace traditional liquid electrolytes for large-scale commercial applications due to their lightweight features
cost-effectiveness
excellent processability
and intrinsic flame-retardant properties. However
traditional commercial SPEs are limited by their intrinsic electrochemical shortcomings
which make it difficult to meet the stringent performance requirements for electrolyte in current high-energy-density battery. Although gel-type electrolytes and inorganic composite electrolytes prepared by physical processes such as hybridization modification
blend optimization
and doping modulation can partially meet the application requirements of lithium metal batteries (LMBs)
the development of SPEs with intrinsically high ionic conductivity and wide electrochemical windows is still a key scientific proposition in the field of energy storage materials. This review provides a brief overview of recent advances in the field of all-solid-state polymer electrolytes as well as systematically organizes and classifies the mainstream design strategies for novel SPEs. These strategies include the design of multidimensional topologies
anion-anchoring strategies
polymer fluorination engineering
weakly-solvating mainchain construction
and other innovative design concepts. Each chapter presents the novel SPEs developed based on the above strategies and demonstrates their practical application in LMBs. Finally
the paper provides insights into the design of safer SPEs with superior electrochemical performance.
Ji X. Y. ; Zhang Y. R. ; Cao M. X. ; Gu Q. C. ; Wang H. L. ; Yu J. S. ; Guo Z. H. ; Zhou X. G. Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries . J. Adv. Ceram. , 2022 , 11 ( 6 ), 835 - 861 . doi: 10.1007/s40145-022-0580-8 http://dx.doi.org/10.1007/s40145-022-0580-8
Wang C. Y. ; Liu T. ; Yang X. G. ; Ge S. H. ; Stanley N. V. ; Rountree E. S. ; Leng Y. J. ; McCarthy B. D. Fast charging of energy-dense lithium-ion batteries . Nature , 2022 , 611 ( 7936 ), 485 - 490 . doi: 10.1038/s41586-022-05281-0 http://dx.doi.org/10.1038/s41586-022-05281-0
Lee M. J. ; Han J. ; Lee K. ; Lee Y. J. ; Kim B. G. ; Jung K. N. ; Kim B. J. ; Lee S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries . Nature , 2022 , 601 ( 7892 ), 217 - 222 . doi: 10.1038/s41586-021-04209-4 http://dx.doi.org/10.1038/s41586-021-04209-4
Zhou X. Y. ; Zhou Y. F. ; Yu L. ; Qi L. H. ; Oh K. S. ; Hu P. ; Lee S. Y. ; Chen C. J. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications . Chem. Soc. Rev. , 2024 , 53 ( 10 ), 5291 - 5337 . doi: 10.1039/d3cs00551h http://dx.doi.org/10.1039/d3cs00551h
Zheng Y. ; Yao Y. Z. ; Ou J. H. ; Li M. ; Luo D. ; Dou H. Z. ; Li Z. Q. ; Amine K. ; Yu A. P. ; Chen Z. W. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures . Chem. Soc. Rev. , 2020 , 49 ( 23 ), 8790 - 8839 . doi: 10.1039/d0cs00305k http://dx.doi.org/10.1039/d0cs00305k
Zhao Q. ; Stalin S. ; Archer L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases . Joule , 2021 , 5 ( 5 ), 1119 - 1142 . doi: 10.1016/j.joule.2021.03.024 http://dx.doi.org/10.1016/j.joule.2021.03.024
Albertus P. ; Babinec S. ; Litzelman S. ; Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries . Nat. Energy , 2017 , 3 ( 1 ), 16 - 21 . doi: 10.1038/s41560-017-0047-2 http://dx.doi.org/10.1038/s41560-017-0047-2
Choi J. W. ; Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities . Nat. Rev. Mater. , 2016 , 1 , 16013 . doi: 10.1038/natrevmats.2016.13 http://dx.doi.org/10.1038/natrevmats.2016.13
Jagger B. ; Pasta M. Solid electrolyte interphases in lithium metal batteries . Joule , 2023 , 7 ( 10 ), 2228 - 2244 . doi: 10.1016/j.joule.2023.08.007 http://dx.doi.org/10.1016/j.joule.2023.08.007
Manthiram A. ; Yu X. W. ; Wang S. F. Lithium battery chemistries enabled by solid-state electrolytes . Nat. Rev. Mater. , 2017 , 2 , 16103 . doi: 10.1038/natrevmats.2016.103 http://dx.doi.org/10.1038/natrevmats.2016.103
Fan L. Z. ; He H. C. ; Nan C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries . Nat. Rev. Mater. , 2021 , 6 ( 11 ), 1003 - 1019 . doi: 10.1038/s41578-021-00320-0 http://dx.doi.org/10.1038/s41578-021-00320-0
Xi G. ; Xiao M. ; Wang S. J. ; Han D. M. ; Li Y. N. ; Meng Y. Z. Polymer-based solid electrolytes: material selection, design, and application . Adv. Funct. Mater. , 2021 , 31 ( 9 ), 2007598 . doi: 10.1002/adfm.202007598 http://dx.doi.org/10.1002/adfm.202007598
Hu L. ; Gao X. ; Wang H. ; Song Y. ; Zhu Y. L. ; Tao Z. J. ; Yuan B. ; Hu R. Z. Progress of polymer electrolytes worked in solid-state lithium batteries for wide-temperature application . Small , 2024 , 20 ( 31 ), 2312251 . doi: 10.1002/smll.202312251 http://dx.doi.org/10.1002/smll.202312251
Meyer W. H. Polymer electrolytes for lithium-ion batteries . Adv. Mater. , 1998 , 10 ( 6 ), 439 - 448 . doi: 10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i http://dx.doi.org/10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i
Cheng X. L. ; Pan J. ; Zhao Y. ; Liao M. ; Peng H. S. Gel polymer electrolytes for electrochemical energy storage . Adv. Energy Mater. , 2018 , 8 ( 7 ), 1702184 . doi: 10.1002/aenm.201702184 http://dx.doi.org/10.1002/aenm.201702184
Zhou D. ; Shanmukaraj D. ; Tkacheva A. ; Armand M. ; Wang G. X. Polymer electrolytes for lithium-based batteries: advances and prospects . Chem , 2019 , 5 ( 9 ), 2326 - 2352 . doi: 10.1016/j.chempr.2019.05.009 http://dx.doi.org/10.1016/j.chempr.2019.05.009
Long L. Z. ; Wang S. J. ; Xiao M. ; Meng Y. Z. Polymer electrolytes for lithium polymer batteries . J. Mater. Chem. A , 2016 , 4 ( 26 ), 10038 - 10069 . doi: 10.1039/c6ta02621d http://dx.doi.org/10.1039/c6ta02621d
Ding P. P. ; Lin Z. Y. ; Guo X. W. ; Wu L. Q. ; Wang Y. T. ; Guo H. X. ; Li L. L. ; Yu H. J. Polymer electrolytes and interfaces in solid-state lithium metal batteries . Mater. Today , 2021 , 51 , 449 - 474 . doi: 10.1016/j.mattod.2021.08.005 http://dx.doi.org/10.1016/j.mattod.2021.08.005
Ko S. ; Obukata T. ; Shimada T. ; Takenaka N. ; Nakayama M. ; Yamada A. ; Yamada Y. Electrode potential influences the reversibility of lithium-metal anodes . Nat. Energy , 2022 , 7 ( 12 ), 1217 - 1224 . doi: 10.1038/s41560-022-01144-0 http://dx.doi.org/10.1038/s41560-022-01144-0
Wang T. Y. ; Guo Y. X. ; Ren K. L. ; Liang J. ; Chen X. Y. ; Luo H. B. ; Ma Y. ; Kong J. Perfluoropolyether-terminated single-ion polymer for enhancing performance of PEO-based solid polymer electrolyte . Small , 2025 , 21 ( 2 ), 2407513 . doi: 10.1002/smll.202407513 http://dx.doi.org/10.1002/smll.202407513
Wang Y. Q. ; Wu Z. Z. ; Azad F. M. ; Zhu Y. T. ; Wang L. Z. ; Hawker C. J. ; Whittaker A. K. ; Forsyth M. ; Zhang C. Fluorination in advanced battery design . Nat. Rev. Mater. , 2023 , 9 ( 2 ), 119 - 133 . doi: 10.1038/s41578-023-00623-4 http://dx.doi.org/10.1038/s41578-023-00623-4
Liu Y. ; Zeng Q. H. ; Li Z. F. ; Chen A. Q. ; Guan J. Z. ; Wang H. H. ; Wang S. ; Zhang L. Y. Recent development in topological polymer electrolytes for rechargeable lithium batteries . Adv. Sci. , 2023 , 10 ( 15 ), 2206978 . doi: 10.1002/advs.202206978 http://dx.doi.org/10.1002/advs.202206978
Miao X. Z. ; Hong J. H. ; Huang S. ; Huang C. ; Liu Y. S. ; Liu M. ; Zhang Q. Q. ; Jin H. Y. In situ gel polymer electrolyte with rapid Li + transport channels and anchored anion sites for high-current-density lithium-ion batteries . Adv. Funct. Mater. , 2025 , 35 ( 1 ), 2411751 . doi: 10.1002/adfm.202411751 http://dx.doi.org/10.1002/adfm.202411751
Li S. Q. ; Jiang K. ; Wang J. R. ; Zuo C. ; Jo Y. H. ; He D. ; Xie X. L. ; Xue Z. G. Molecular brush with dense PEG side chains: design of a well-defined polymer electrolyte for lithium-ion batteries . Macromolecules , 2019 , 52 ( 19 ), 7234 - 7243 . doi: 10.1021/acs.macromol.9b01641 http://dx.doi.org/10.1021/acs.macromol.9b01641
Ji X. Y. ; Xiao L. L. ; Zhang Y. R. ; Yue K. ; Zhou X. G. ; Guo Z. H. Unveiling the side-chain effect on ionic conductivity of poly(ethylene oxide)-based polymer-brush electrolytes . ACS Appl. Energy Mater. , 2022 , 5 ( 7 ), 8410 - 8418 . doi: 10.1021/acsaem.2c00962 http://dx.doi.org/10.1021/acsaem.2c00962
Ji X. Y. ; Li S. M. ; Cao M. X. ; Liang R. Q. ; Xiao L. L. ; Yue K. ; Liu S. H. ; Zhou X. G. ; Guo Z. H. Crosslinked polymer-brush electrolytes: an approach to safe all-solid-state lithium metal batteries at room temperature . Batter. Supercaps , 2022 , 5 ( 2 ), e 202100319 . doi: 10.1002/batt.202200004 http://dx.doi.org/10.1002/batt.202200004
Chen Y. ; Shi Y. ; Liang Y. L. ; Dong H. ; Hao F. ; Wang A. ; Zhu Y. X. ; Cui X. L. ; Yao Y. Hyperbranched PEO-based hyperstar solid polymer electrolytes with simultaneous improvement of ion transport and mechanical strength . ACS Appl. Energy Mater. , 2019 , 2 ( 3 ), 1608 - 1615 . doi: 10.1021/acsaem.8b02188 http://dx.doi.org/10.1021/acsaem.8b02188
Zhao Y. C. ; Ma M. Y. ; Lin X. R. ; Chen M. Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers . Angew. Chem. Int. Ed. , 2020 , 59 ( 48 ), 21470 - 21474 . doi: 10.1002/anie.202009475 http://dx.doi.org/10.1002/anie.202009475
Guo K. R. ; Li S. Q. ; Wang J. R. ; Shi Z. ; Wang Y. ; Xue Z. G. In situ orthogonal polymerization for constructing fast-charging and long-lifespan Li metal batteries with topological copolymer electrolytes . ACS Energy Lett. , 2024 , 9 ( 3 ), 843 - 852 . doi: 10.1021/acsenergylett.3c02422 http://dx.doi.org/10.1021/acsenergylett.3c02422
Ye G. ; Hong X. F. ; He M. X. ; Song J. J. ; Zhu L. J. ; Zheng C. X. ; Ma Y. ; An Y. ; Shen K. E. ; Shi W. Z. ; Jia Y. F. ; Shafqat M. B. ; Gao P. ; Xia D. G. ; Chen F. F. ; Pang Q. Q. All-solid-state lithium metal batteries with microdomain-regulated polycationic solid electrolytes . Adv. Mater. , 2025 , 37 ( 12 ), 2417829 . doi: 10.1002/adma.202417829 http://dx.doi.org/10.1002/adma.202417829
Zhao L. Y. ; Dong Q. Y. ; Wang Y. Q. ; Xue G. Y. ; Wang X. C. ; Li Z. Y. ; Shao H. ; Chen H. W. ; Shen Y. B. ; Chen L. W. Anion modulation: enabling highly conductive stable polymer electrolytes for solid-state Li-metal batteries . Angew. Chem. Int. Ed. , 2024 , 63 ( 52 ), e 202412280 . doi: 10.1002/anie.202412280 http://dx.doi.org/10.1002/anie.202412280
Shi X. R. ; Zhong Y. P. ; Yang Y. Q. ; Zhou J. ; Cao X. X. ; Liang S. Q. Anion-anchored polymer-in-salt solid electrolyte for high-performance zinc batteries . Angew. Chem. Int. Ed. , 2025 , 64 ( 2 ), e 202414777 . doi: 10.1002/anie.202414777 http://dx.doi.org/10.1002/anie.202414777
Bouchet R. ; Maria S. ; Meziane R. ; Aboulaich A. ; Lienafa L. ; Bonnet J. P. ; Phan T. N. T. ; Bertin D. ; Gigmes D. ; Devaux D. ; Denoyel R. ; Armand M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries . Nat. Mater. , 2013 , 12 ( 5 ), 452 - 457 . doi: 10.1038/nmat3602 http://dx.doi.org/10.1038/nmat3602
Zhou M. H. ; Liu R. L. ; Jia D. Y. ; Cui Y. ; Liu Q. T. ; Liu S. H. ; Wu D. C. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries . Adv. Mater. , 2021 , 33 ( 29 ), 2100943 . doi: 10.1002/adma.202100943 http://dx.doi.org/10.1002/adma.202100943
Shan X. Y. ; Morey M. ; Li Z. X. ; Zhao S. ; Song S. H. ; Xiao Z. X. ; Feng H. ; Gao S. L. ; Li G. R. ; Sokolov A. P. ; Ryan E. ; Xu K. ; Tian M. ; He Y. ; Yang H. B. ; Cao P. F. A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries . ACS Energy Lett. , 2022 , 7 ( 12 ), 4342 - 4351 . doi: 10.1021/acsenergylett.2c02349 http://dx.doi.org/10.1021/acsenergylett.2c02349
Zhang Q. ; Bian T. F. ; Wang X. B. ; Shi R. J. ; Zhao Y. Unlocking mechanism of anion and cation interaction on ion conduction of polymer based electrolyte in metal batteries . Angew. Chem. Int. Ed. , 2025 , 64 ( 3 ), e 202415343 . doi: 10.1002/anie.202415343 http://dx.doi.org/10.1002/anie.202415343
Han S. T. ; Wen P. ; Wang H. J. ; Zhou Y. ; Gu Y. ; Zhang L. ; Shao-Horn Y. ; Lin X. R. ; Chen M. Sequencing polymers to enable solid-state lithium batteries . Nat. Mater. , 2023 , 22 ( 12 ), 1515 - 1522 . doi: 10.1038/s41563-023-01693-z http://dx.doi.org/10.1038/s41563-023-01693-z
von Aspern N. ; Röschenthaler G. V. ; Winter M. ; Cekic-Laskovic I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes . Angew. Chem. Int. Ed. , 2019 , 58 ( 45 ), 15978 - 16000 . doi: 10.1002/anie.201901381 http://dx.doi.org/10.1002/anie.201901381
Lu D. ; Li R. H. ; Rahman M. M. ; Yu P. Y. ; Lv L. ; Yang S. ; Huang Y. Q. ; Sun C. C. ; Zhang S. Q. ; Zhang H. K. ; Zhang J. B. ; Xiao X. Z. ; Deng T. ; Fan L. W. ; Chen L. X. ; Wang J. P. ; Hu E. Y. ; Wang C. S. ; Fan X. L. Ligand-channel-enabled ultrafast Li-ion conduction . Nature , 2024 , 627 ( 8002 ), 101 - 107 . doi: 10.1038/s41586-024-07045-4 http://dx.doi.org/10.1038/s41586-024-07045-4
Yu Z. A. ; Rudnicki P. E. ; Zhang Z. W. ; Huang Z. J. ; Celik H. ; Oyakhire S. T. ; Chen Y. L. ; Kong X. ; Kim S. C. ; Xiao X. ; Wang H. S. ; Zheng Y. ; Kamat G. A. ; Kim M. S. ; Bent S. F. ; Qin J. ; Cui Y. ; Bao Z. N. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes . Nat. Energy , 2022 , 7 ( 1 ), 94 - 106 . doi: 10.1038/s41560-021-00962-y http://dx.doi.org/10.1038/s41560-021-00962-y
Efaw C. M. ; Wu Q. S. ; Gao N. ; Zhang Y. G. ; Zhu H. Y. ; Gering K. ; Hurley M. F. ; Xiong H. ; Hu E. Y. ; Cao X. ; Xu W. ; Zhang J. G. ; Dufek E. J. ; Xiao J. ; Yang X. Q. ; Liu J. ; Qi Y. ; Li B. Localized high-concentration electrolytes get more localized through micelle-like structures . Nat. Mater. , 2023 , 22 ( 12 ), 1531 - 1539 . doi: 10.1038/s41563-023-01700-3 http://dx.doi.org/10.1038/s41563-023-01700-3
Ma M. Y. ; Shao F. ; Wen P. ; Chen K. X. ; Li J. R. ; Zhou Y. ; Liu Y. L. ; Jia M. Y. ; Chen M. ; Lin X. R. Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes . ACS Energy Lett. , 2021 , 6 ( 12 ), 4255 - 4264 . doi: 10.1021/acsenergylett.1c02036 http://dx.doi.org/10.1021/acsenergylett.1c02036
Zhu J. ; Bian P. R. ; Sun G. L. ; Zhang J. P. ; Lou G. L. ; Song X. C. ; Zhao R. Q. ; Liu J. ; Xu N. ; Li A. H. ; Wan X. J. ; Ma Y. F. ; Li C. X. ; Zhang H. T. ; Chen Y. S. Practical high-voltage lithium metal batteries enabled by the in situ fabrication of main-chain fluorinated polymer electrolytes . Angew. Chem. Int. Ed. , 2025 , 64 ( 16 ), e 202424685 . doi: 10.1002/anie.202424685 http://dx.doi.org/10.1002/anie.202424685
Huang Z. J. ; Choudhury S. ; Paul N. ; Thienenkamp J. H. ; Lennartz P. ; Gong H. X. ; Müller-Buschbaum P. ; Brunklaus G. ; Gilles R. ; Bao Z. N. Effects of polymer coating mechanics at solid-electrolyte interphase for stabilizing lithium metal anodes . Adv. Energy Mater. , 2022 , 12 ( 5 ), 2103187 . doi: 10.1002/aenm.202103187 http://dx.doi.org/10.1002/aenm.202103187
Wang X. E. ; Zhang C. ; Sawczyk M. ; Sun J. ; Yuan Q. H. ; Chen F. F. ; Mendes T. C. ; Howlett P. C. ; Fu C. K. ; Wang Y. Q. ; Tan X. ; Searles D. J. ; Král P. ; Hawker C. J. ; Whittaker A. K. ; Forsyth M. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes . Nat. Mater. , 2022 , 21 ( 9 ), 1057 - 1065 . doi: 10.1038/s41563-022-01296-0 http://dx.doi.org/10.1038/s41563-022-01296-0
Ding P. P. ; Zhao S. ; Lin Z. Y. ; Wu L. Q. ; Xu L. G. ; Liu S. Q. ; Guo X. W. ; Tang M. X. ; Yu H. J. Local fluorinated functional units enhance Li+ transport in acrylate-based polymer electrolytes for lithium metal batteries . Nano Energy , 2024 , 129 , 110006 . doi: 10.1016/j.nanoen.2024.110006 http://dx.doi.org/10.1016/j.nanoen.2024.110006
Jia M. Y. ; Wen P. ; Wang Z. T. ; Zhao Y. C. ; Liu Y. M. ; Lin J. ; Chen M. ; Lin X. R. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries . Adv. Funct. Mater. , 2021 , 31 ( 27 ), 2101736 . doi: 10.1002/adfm.202101736 http://dx.doi.org/10.1002/adfm.202101736
You D. L. ; Lai Z. W. ; Wei W. ; Xiong H. M. High-voltage all-solid-state lithium metal batteries enabled by localized high-salt-concentration in-chain clustering copolymer electrolytes . Adv. Funct. Mater. , 2025 , 35 ( 7 ), 2415464 . doi: 10.1002/adfm.202415464 http://dx.doi.org/10.1002/adfm.202415464
Chang Z. ; Yang H. J. ; Qiao Y. ; Zhu X. Y. ; He P. ; Zhou H. S. Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries . Adv. Mater. , 2022 , 34 ( 34 ), 2201339 . doi: 10.1002/adma.202201339 http://dx.doi.org/10.1002/adma.202201339
Yu Z. A. ; Wang H. S. ; Kong X. ; Huang W. ; Tsao Y. ; Mackanic D. G. ; Wang K. C. ; Wang X. C. ; Huang W. X. ; Choudhury S. ; Zheng Y. ; Amanchukwu C. V. ; Hung S. T. ; Ma Y. T. ; Lomeli E. G. ; Qin J. ; Cui Y. ; Bao Z. N. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries . Nat. Energy , 2020 , 5 ( 7 ), 526 - 533 . doi: 10.1038/s41560-020-0634-5 http://dx.doi.org/10.1038/s41560-020-0634-5
Ma P. Y. ; Mirmira P. ; Amanchukwu C. V. Effect of building block connectivity and ion solvation on electrochemical stability and ionic conductivity in novel fluoroether electrolytes . ACS Cent. Sci. , 2021 , 7 ( 7 ), 1232 - 1244 . doi: 10.1021/acscentsci.1c00503 http://dx.doi.org/10.1021/acscentsci.1c00503
Fang H. Y. ; Huang Y. H. ; Hu W. ; Song Z. H. ; Wei X. S. ; Geng J. R. ; Jiang Z. L. ; Qu H. ; Chen J. ; Li F. J. Regulating ion-dipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries . Angew. Chem. Int. Ed. , 2024 , 63 ( 15 ), e 202400539 . doi: 10.1002/anie.202400539 http://dx.doi.org/10.1002/anie.202400539
Liu X. ; Zhang J. W. ; Yun X. Y. ; Li J. ; Yu H. Q. ; Peng L. Q. ; Xi Z. H. ; Wang R. H. ; Yang L. ; Xie W. ; Chen J. ; Zhao Q. Anchored weakly-solvated electrolytes for high-voltage and low-temperature lithium-ion batteries . Angew. Chem. Int. Ed. , 2024 , 63 ( 36 ), e 202406596 . doi: 10.1002/anie.202406596 http://dx.doi.org/10.1002/anie.202406596
Ma T. ; Ni Y. X. ; Wang Q. R. ; Zhang W. J. ; Jin S. ; Zheng S. B. ; Yang X. ; Hou Y. P. ; Tao Z. L. ; Chen J. Optimize lithium deposition at low temperature by weakly solvating power solvent . Angew. Chem. , 2022 , 134 ( 39 ), e 202207927 . doi: 10.1002/anie.202207927 http://dx.doi.org/10.1002/anie.202207927
Li A. M. ; Borodin O. ; Pollard T. P. ; Zhang W. R. ; Zhang N. ; Tan S. ; Chen F. ; Jayawardana C. ; Lucht B. L. ; Hu E. Y. ; Yang X. Q. ; Wang C. S. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries . Nat. Chem. , 2024 , 16 ( 6 ), 922 - 929 . doi: 10.1038/s41557-024-01497-x http://dx.doi.org/10.1038/s41557-024-01497-x
Wei Y. ; Wang H. ; Lin X. ; Wang T. Y. ; Cui Y. M. ; Huang Y. ; Yang J. Y. ; Liu T. H. ; Ren Y. ; Fan X. L. ; Xu H. H. ; Huang Y. H. Moderate solvation structures of lithium ions for high-voltage lithium metal batteries at - 40 ℃. Energy Environ. Sci. , 2025 , 18 ( 2 ), 786 - 798 . doi: 10.1039/d4ee03192j http://dx.doi.org/10.1039/d4ee03192j
Ye G. ; Zhu L. J. ; Ma Y. ; He M. X. ; Zheng C. X. ; Shen K. E. ; Hong X. F. ; Xiao Z. T. ; Jia Y. F. ; Gao P. ; Pang Q. Q. Molecular design of solid polymer electrolytes with enthalpy-entropy manipulation for Li metal batteries with aggressive cathode chemistry . J. Am. Chem. Soc. , 2024 , 146 ( 40 ), 27668 - 27678 . doi: 10.1021/jacs.4c09062 http://dx.doi.org/10.1021/jacs.4c09062
Guo K. R. ; Wang J. R. ; Shi Z. ; Wang Y. ; Xie X. L. ; Xue Z. G. One-step in situ polymerization: a facile design strategy for block copolymer electrolytes . Angew. Chem. Int. Ed. , 2023 , 62 ( 9 ), e 202213606 . doi: 10.1002/anie.202213606 http://dx.doi.org/10.1002/anie.202213606
Liu Y. C. ; Jin Z. K. ; Liu Z. Y. ; Xu H. ; Sun F. R. ; Zhang X. Q. ; Chen T. ; Wang C. Regulating the solvation structure in polymer electrolytes for high-voltage lithium metal batteries . Angew. Chem. Int. Ed. , 2024 , 63 ( 34 ), e 202405802 . doi: 10.1002/anie.202405802 http://dx.doi.org/10.1002/anie.202405802
Chen J. ; Deng X. T. ; Gao Y. Y. ; Zhao Y. J. ; Kong X. P. ; Rong Q. ; Xiong J. Q. ; Yu D. M. ; Ding S. J. Multiple dynamic bonds-driven integrated cathode/polymer electrolyte for stable all-solid-state lithium metal batteries . Angew. Chem. Int. Ed. , 2023 , 62 ( 35 ), e 202307255 . doi: 10.1002/anie.202307255 http://dx.doi.org/10.1002/anie.202307255
Liu H. ; Zhen F. X. ; Yin X. K. ; Wu Y. B. ; Yu K. L. ; Kong X. P. ; Ding S. J. ; Yu W. Ultra-tough dynamic supramolecular ion-conducting elastomer induced uniform Li + transport and stabilizes interphase ensures dendrite-free lithium metal anodes . Angew. Chem. Int. Ed. , 2025 , 64 ( 2 ), e 202414599 . doi: 10.1002/anie.202414599 http://dx.doi.org/10.1002/anie.202414599
Matsuoka R. ; Shibata M. ; Matsuo K. ; Sai R. ; Tsutsumi H. ; Fujii K. ; Katayama Y. Importance of lithium coordination structure to lithium-ion transport in polyether electrolytes with cyanoethoxy side chains: an experimental and theoretical approach . Macromolecules , 2020 , 53 ( 21 ), 9480 - 9490 . doi: 10.1021/acs.macromol.0c01634 http://dx.doi.org/10.1021/acs.macromol.0c01634
Peng H. ; Long T. R. ; Peng J. ; Chen H. ; Ji L. F. ; Sun H. ; Huang L. ; Sun S. G. Molecular design for in situ polymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries . Adv. Energy Mater. , 2024 , 14 ( 22 ), 2400428 . doi: 10.1002/aenm.202400428 http://dx.doi.org/10.1002/aenm.202400428
Li X. Y. ; Zhang Z. N. ; Feng J. ; Yin X. K. ; Cui X. F. ; Xu W. ; Zhang H. J. ; Zeng R. ; Ding S. J. Precisely succinonitrile-functionalized PEO electrolytes toward room-temperature all-solid-state lithium batteries . Sci. China Mater. , 2024 , 67 ( 5 ), 1412 - 1421 . doi: 10.1007/s40843-024-2857-8 http://dx.doi.org/10.1007/s40843-024-2857-8
Li Y. N. ; Wen B. ; Li N. ; Zhao Y. J. ; Chen Y. Z. ; Yin X. K. ; Da X. Y. ; Ouyang Y. X. ; Li X. Y. ; Kong P. X. ; Ding S. J. ; Xi K. ; Gao G. X. Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries . Angew. Chem. Int. Ed. , 2025 , 64 ( 2 ), e 202414636 . doi: 10.1002/anie.202414636 http://dx.doi.org/10.1002/anie.202414636
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构