浏览全部资源
扫码关注微信
1.四川大学高分子研究所 先进高分子材料全国重点实验室 成都 610065
2.金发科技股份有限公司 广州 510663
E-mail: zhanglong@kingfa.com.cn;
E-mail: z nic7702@scu.edu.cn
收稿日期:2025-04-25,
录用日期:2025-05-27,
网络出版日期:2025-07-06,
移动端阅览
张龙, 柯其宁, 刘乐文, 陈延安, 邹声文, 秦朋, 郭少云. 氯化聚氯乙烯:从改性塑料到功能化应用的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25109
Zhang, L.; Ke, Q. N.; Liu, L. W.; Chen, Y. A.; Zou, S. W.; Qin, P.; Guo, S. Y. Advances in chlorinated polyvinyl chloride: from modification to functional applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25109
张龙, 柯其宁, 刘乐文, 陈延安, 邹声文, 秦朋, 郭少云. 氯化聚氯乙烯:从改性塑料到功能化应用的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25109 DOI: CSTR: 32057.14.GFZXB.2025.7432.
Zhang, L.; Ke, Q. N.; Liu, L. W.; Chen, Y. A.; Zou, S. W.; Qin, P.; Guo, S. Y. Advances in chlorinated polyvinyl chloride: from modification to functional applications. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25109 DOI: CSTR: 32057.14.GFZXB.2025.7432.
氯化聚氯乙烯材料由于其独特的物理化学性能,在工业界和学术研究领域都引起了广泛的研究兴趣. 本文从氯化聚氯乙烯的合成与氯化反应机理、早期作为改性塑料的研究、及近期报道氯化聚氯乙烯的功能化应用研究这三个方面展开综述. 重点回顾了国内外氯化聚氯乙烯材料的发展概况,并介绍了氯化聚氯乙烯通过合金化改性的相关研究进展,及其近期在纤维领域、微孔膜、聚合物电解质及在废弃锂电池中金属回收处理等功能化应用中的研究进展,为相关氯化聚氯乙烯材料的研究工作者,及不同应用领域的科研人员开阔新的研究思路. 最后,本文还对氯化聚氯乙烯材料在未来的发展上做出了相应的展望,以促进氯化聚氯乙烯在上游合成领域及下游应用研究领域的多元化、高质量发展.
Chlorinated Polyvinyl Chloride
owing to its unique physicochemical properties
has garnered extensive research interest in both industrial and academic fields. This review systematically summarizes CPVC from three key perspectives: (1) synthesis and chlorination mechanisms
(2) early-stage research as a modified plastic
and (3) recent advances in functional applications. A comprehensive overview of the development of CPVC materials globally
chlorination mechanisms
and typical production process (including solution method
gas-solid phase method
and aqueous suspension method) of CPVC have been briefly introduced. Research on the processing and molding of CPVC was summarized. Studies on the physical blending modification of CPVC with various polymers (such as PVC
ABS
and PMMA) were comprehensively reviewed
while progress in chemical modification via graft copolymerization was briefly presented. Additionally
the pyrolysis behavior
flame retardancy
smoke suppression
and aging resistance of CPVC materials were discussed. More importantly
highlighting progress in emerging functional applications
including CPVC fiber and its derivative carbon fiber
CPVC microporous membranes
CPVC-based solid polymer electrolytes
and metal recovery from spent lithium-ion batteries have been systematically reviewed
which indicates that CPVC play a critical role among multidisciplinary research domains. These insights aim to inspire researchers working on CPVC materials and scientists across various application fields. Finally
in this review
an outlook on the future development of CPVC has been proposed
emphasizing the need for diversification and high-quality advancements in both upstream synthesis and downstream applications.
Komoroski R. A. ; Parker R. G. ; Shockcor J. P. Carbon-13 NMR microstructural analysis of chlorinated poly(vinyl chloride) in terms of three-carbon sequences . Macromolecules , 1985 , 18 ( 6 ), 1257 - 1265 . doi: 10.1021/ma00148a037 http://dx.doi.org/10.1021/ma00148a037
Lehr M. H. ; Parker R. G. ; Komoroski R. A. Thermal property-structure relationships of solution-chlorinated poly(vinyl chlorides) . Macromolecules , 1985 , 18 ( 6 ), 1265 - 1272 . doi: 10.1021/ma00148a038 http://dx.doi.org/10.1021/ma00148a038
Allen V. R. ; Young R. D. Investigation of the mechanism of chlorination of poly(vinyl chloride) as influenced by chain microstructure . J. Polym. Sci. A-1 Polym. Chem. , 1970 , 8 ( 11 ), 3123 - 3133 . doi: 10.1002/pol.1970.150081107 http://dx.doi.org/10.1002/pol.1970.150081107
Komoroski R. A. ; Parker R. G. ; Lehr M. H. 50.3-MHz carbon-13 NMR study of chlorinated poly(vinyl chloride) microstructure and the mechanism of chlorination . Macromolecules , 1982 , 15 ( 3 ), 844 - 848 . doi: 10.1021/ma00231a030 http://dx.doi.org/10.1021/ma00231a030
Lukáš R. ; Světlý J. ; Kolínský M. Structure of chlorinated poly(vinyl chloride). X. Conclusions on the chlorination mechanism . J. Polym. Sci. Polym. Chem. Ed. , 1981 , 19 ( 2 ), 295 - 304 . doi: 10.1002/pol.1981.170190207 http://dx.doi.org/10.1002/pol.1981.170190207
Lehr M. H. Miscibility in poly(vinyl chloride)/chlorinated poly(vinyl chloride) blends, and blends of different chlorinated poly(vinyl chlorides) . Polym. Eng. Sci. , 1985 , 25 ( 17 ), 1056 - 1068 . doi: 10.1002/pen.760251703 http://dx.doi.org/10.1002/pen.760251703
Carty P. ; White S. Anomalous flammability behaviour of CPVC (chlorinated poly vinylchloride) in blends with ABS (acrylonitrile-butadiene-styrene) containing flame-retarding/smoke-suppressing compounds . Polymer , 1997 , 38 ( 5 ), 1111 - 1119 . doi: 10.1016/s0032-3861(96)00606-4 http://dx.doi.org/10.1016/s0032-3861(96)00606-4
史铁钧 , 吴大诚 , 张正柏 . 氯化聚氯乙烯/氯化聚乙烯共混体的流变性能 . 高分子学报 , 1990 , 21 ( 3 ), 349 - 352 .
Liu Z. P. ; Cui Y. Y. Study on the performance of CPVC/PMMA blends . Appl. Mech. Mater. , 2013 , 320 , 473 - 477 . doi: 10.4028/www.scientific.net/amm.320.473 http://dx.doi.org/10.4028/www.scientific.net/amm.320.473
Cai X. L. ; Jiang T. T. ; Qiao C. M. ; Cheng B. W. ; Kang W. M. Effect of electrospinning process on electrospun chlorinated polyvinyl chloride (CPVC) nanofibers . Appl. Mech. Mater. , 2014 , 633 - 634 , 11 - 14 .
廖怡文 , 田雨灵 , 周勇 , 代梦瑜 , 吴运亨 , 张勇 . 熔纺氯化聚氯乙烯纤维的制备及性能研究 . 合成纤维工业 , 2018 , 41 ( 4 ), 43 - 45 .
廖怡文 , 陈杰 , 田雨灵 , 姚安荣 , 郭荣辉 , 吴运亨 , 张勇 . 氯化聚氯乙烯多孔纤维的制备及结构性能研究 . 合成纤维工业 , 2019 , 42 ( 3 ), 60 - 63 .
Liu J. C. ; Shimanoe H. ; Ko S. ; Lee H. S. ; Jo C. ; Lee J. ; Hong S. H. ; Lee H. ; Jeon Y. P. ; Nakabayashi K. ; Miyawaki J. ; Yoon S. H. Highly chlorinated polyvinyl chloride as a novel precursor for fibrous carbon material . Polymers , 2020 , 12 ( 2 ), 328 . doi: 10.3390/polym12020328 http://dx.doi.org/10.3390/polym12020328
Kim J. ; Lee J. ; Jo C. ; Kang C. Development of low cost carbon fibers based on chlorinated polyvinyl chloride (CPVC) for automotive applications . Mater. Des. , 2021 , 204 , 109682 . doi: 10.1016/j.matdes.2021.109682 http://dx.doi.org/10.1016/j.matdes.2021.109682
Liu S. H. ; Chu Y. J. ; Tang C. ; He S. T. ; Wu C. R. High-performance chlorinated polyvinyl chloride ultrafiltration membranes prepared by compound additives regulated non-solvent induced phase separation . J. Membr. Sci. , 2020 , 612 , 118434 . doi: 10.1016/j.memsci.2020.118434 http://dx.doi.org/10.1016/j.memsci.2020.118434
Chen G. J. ; Yang Y. Y. ; Kang D. D. ; Qin Q. Q. ; Jin J. B. ; Shao H. J. ; Qin S. H. Enhanced performances of chlorinated polyvinyl chloride (CPVC) ultrafiltration membranes by styrene-maleic anhydride copolymer . Sep. Purif. Technol. , 2021 , 258 , 118043 . doi: 10.1016/j.seppur.2020.118043 http://dx.doi.org/10.1016/j.seppur.2020.118043
Zhan X. M. ; Cheng J. F. ; Xiang L. ; Shao H. J. ; Qin S. H. Constructing microstructures of chlorinated polyvinyl chloride microporous membranes by non-solvent induced phase separation for high permeate flux and rejection performance . Fibres. Polym. , 2021 , 22 ( 5 ), 1189 - 1199 . doi: 10.1007/s12221-021-0237-1 http://dx.doi.org/10.1007/s12221-021-0237-1
Li J. ; Chen G. J. ; Luo S. S. ; Pang H. X. ; Gao C. T. ; Huang S. W. ; Liu S. ; Qin S. H. Tuning the microstructure of SMA/CPVC membrane for enhanced separation performance by adjusting the coagulation bath temperature . J. Appl. Polym. Sci. , 2022 , 139 ( 20 ), 52148 . doi: 10.1002/app.52148 http://dx.doi.org/10.1002/app.52148
Chen G. J. ; Xie W. C. ; Chen C. ; Wu Q. D. ; Qin S. H. ; Liu B. C. Preparation of high flux chlorinated polyvinyl chloride composite ultrafiltration membranes with ternary amphiphilic copolymers as anchor pore-forming agents and enhanced anti-fouling behavior . Ind. Eng. Chem. Res. , 2023 , 62 ( 3 ), 1390 - 1403 . doi: 10.1021/acs.iecr.2c03847 http://dx.doi.org/10.1021/acs.iecr.2c03847
Peng X. L. ; Zhu Y. L. ; Song S. P. ; Zhang X. K. ; Xiang Y. Improved battery safety via in situ dip-coated composite gel polymer electrolytes . J. Power Sources , 2020 , 455 , 227963 . doi: 10.1016/j.jpowsour.2020.227963 http://dx.doi.org/10.1016/j.jpowsour.2020.227963
李家驌 . 氯化聚氯乙烯基阻燃锂电池隔膜和电解质的制备及性能研究 . 北京 : 北京化工大学 , 2022 .
Liu K. ; Zhang F. S. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water . J. Hazard. Mater. , 2016 , 316 , 19 - 25 . doi: 10.1016/j.jhazmat.2016.04.080 http://dx.doi.org/10.1016/j.jhazmat.2016.04.080
Nshizirungu T. ; Agarwal A. ; Jo Y. T. ; Rana M. ; Shin D. ; Park J. H. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water . J. Hazard. Mater. , 2020 , 393 , 122367 . doi: 10.1016/j.jhazmat.2020.122367 http://dx.doi.org/10.1016/j.jhazmat.2020.122367
Nshizirungu T. ; Rana M. ; Jo Y. T. ; Park J. H. Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride . J. Hazard. Mater. , 2020 , 396 , 122667 . doi: 10.1016/j.jhazmat.2020.122667 http://dx.doi.org/10.1016/j.jhazmat.2020.122667
Nshizirungu T. ; Rana M. ; Jo Y. T. ; Park J. H. Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: a comparative study . J. Hazard. Mater. , 2021 , 414 , 125575 . doi: 10.1016/j.jhazmat.2021.125575 http://dx.doi.org/10.1016/j.jhazmat.2021.125575
Lu L. H. ; Li W. M. ; Cheng Y. ; Liu M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: a review . Waste Manag. , 2023 , 166 , 245 - 258 . doi: 10.1016/j.wasman.2023.05.012 http://dx.doi.org/10.1016/j.wasman.2023.05.012
韩正 , 常青 , 杨秀岭 . 氯化聚氯乙烯的研究、生产和应用现状 . 聚氯乙烯 , 2011 , 39 ( 2 ), 1 - 4 .
Lu W. ; Yang Q. L. ; Yan B. H. ; Cheng Y. Plasma-assisted synthesis of chlorinated polyvinyl chloride (CPVC) characterized by online UV-Vis analysis . Chem. Eng. J. , 2012 , 207 , 923 - 930 . doi: 10.1016/j.cej.2012.06.158 http://dx.doi.org/10.1016/j.cej.2012.06.158
Yang Q. L. ; Lu W. ; Mao D. ; Yang R. ; Cheng Y. Plasma-assisted synthesis of chlorinated polyvinyl chloride (CPVC) using a plasma circulating fluidized bed reactor (PCFBR) . Plasma Process. Polym. , 2016 , 13 ( 3 ), 387 - 396 . doi: 10.1002/ppap.201500081 http://dx.doi.org/10.1002/ppap.201500081
Yang L. ; Wang J. C. ; Luo L. Z. ; Li S. F. ; Zhao J. R. ; Feng Y. Structure and solubility of chlorinated poly(vinyl chloride) prepared by a gas-solid phase method . J. Appl. Polym. Sci. , 2018 , 135 ( 48 ), 46880 . doi: 10.1002/app.46880 http://dx.doi.org/10.1002/app.46880
李帅 . PVC的非均相氯化法制备CPVC树脂 . 北京 : 北京化工大学 , 2024 .
李慧君 , 吕海金 , 刘光辉 , 张哲 . 水相悬浮法生产氯化聚氯乙烯树脂 . 聚氯乙烯 , 2002 , 30 ( 3 ), 18 - 20 . doi: 10.3969/j.issn.1009-7937.2002.03.005 http://dx.doi.org/10.3969/j.issn.1009-7937.2002.03.005
褚钰宇 , 蒋文伟 , 杨琴 , 罗芩 , 宋倩茜 . 水相悬浮法CPVC生产新工艺 . 聚氯乙烯 , 2010 , 38 ( 11 ), 7 - 9 . doi: 10.3969/j.issn.1009-7937.2010.11.002 http://dx.doi.org/10.3969/j.issn.1009-7937.2010.11.002
Shun W. C. ; Morikawa H. ; Inoue H. Conversion distribution in diffusion-governed chlorination of poly(vinyl chloride) . AlChE. J. , 1988 , 34 ( 10 ), 1683 - 1690 . doi: 10.1002/aic.690341012 http://dx.doi.org/10.1002/aic.690341012
陈国文 , 何丽蓉 , 张未星 . 水相悬浮法制备氯化聚氯乙烯新工艺 . 塑料工业 , 2012 , 40 ( 9 ), 26 - 29 .
Qian Y. H. ; Cao G. P. ; Li X. K. ; Wang N. Synthesis of chlorinated poly(vinyl chloride) with uniform distribution of chlorine assisted by supercritical carbon dioxide and a cosolvent . Ind. Eng. Chem. Res. , 2017 , 56 ( 23 ), 6562 - 6571 . doi: 10.1021/acs.iecr.7b00830 http://dx.doi.org/10.1021/acs.iecr.7b00830
Grohman M. ; Holloway S. Successful extrusion of small diameter CPVC pipe . J. Vinyl Addit. Technol. , 1997 , 3 ( 1 ), 28 - 32 . doi: 10.1002/vnl.10162 http://dx.doi.org/10.1002/vnl.10162
Rauwendaal, C. Polymer Extrusion . Polym. Extrus. , 2014 , 6 ( 5 ), I-XVI. doi: 10.1038/ngeo1767 http://dx.doi.org/10.1038/ngeo1767
Cao Y. H. ; Chen J. N. Effect of wall conditions on PVC-R co -rotating conical twin-screw extrusion . Adv. Mater. Res. , 2011 , 314 - 316 , 419 - 427 . doi: 10.4028/www.scientific.net/AMR.314-316.419 http://dx.doi.org/10.4028/www.scientific.net/AMR.314-316.419
边靖 . 锥形双螺杆挤出机螺杆结构对制品性能的影响 . 北京 : 北京化工大学 , 2016 .
White J. L. ; Kim B. J. ; Bawiskar S. ; Keum J. M. Development of a global computer software for modular self-wiping corotating twin screw extruders . Polym. Plast. Technol. Eng. , 2001 , 40 ( 4 ), 385 - 405 . doi: 10.1081/ppt-100002065 http://dx.doi.org/10.1081/ppt-100002065
仝裕如 . CPVC及PVC双轴偏心转子塑化挤出机理研究 . 华南理工大学硕士学位论文 , 2021 .
Bélorgey G. ; Aubin M. ; Prud'homme R. E. Studies of polyester/chlorinated poly(vinyl chloride) blends . Polymer , 1982 , 23 ( 7 ), 1051 - 1056 . doi: 10.1016/0032-3861(82)90407-4 http://dx.doi.org/10.1016/0032-3861(82)90407-4
Aubin M. ; Prud'Homme R. E. A study of aromatic polyester/chlorinated polymer blends . Polym. Eng. Sci. , 1984 , 24 ( 5 ), 350 - 354 . doi: 10.1002/pen.760240509 http://dx.doi.org/10.1002/pen.760240509
Neill J. T. ; Karasz F. E. Miscibility of some polycarbonates with polyvinyl chloride and chlorinated polyvinyl chloride . J. Therm. Anal. Calorim. , 2000 , 59 ( 1 ), 33 - 58 . doi: 10.1023/a:1010115408506 http://dx.doi.org/10.1023/a:1010115408506
Lu L. F. ; Price D. ; Milnes G. J. ; Carty P. ; White S. GC/MS studies of ABS/CPVC blends . Polym. Degrad. Stab. , 1999 , 64 ( 3 ), 601 - 603 . doi: 10.1016/s0141-3910(98)00148-7 http://dx.doi.org/10.1016/s0141-3910(98)00148-7
Zhang L. X. ; Zhou C. ; Sun S. L. ; Ren L. ; Ma X. L. ; Zhang M. Y. ; Zhang H. X. Study of compatibility, morphology structure and mechanical properties of CPVC/ABS blends . J. Appl. Polym. Sci. , 2010 , 116 ( 6 ), 3448 - 3454 . doi: 10.1002/app.31855 http://dx.doi.org/10.1002/app.31855
Marossy K. ; Tóth J. Anomalous behaviour of PVC-CPVC-CPE blends . Plast. Rubber Compos. , 2005 , 34 ( 10 ), 438 - 442 . doi: 10.1179/174328905x66162 http://dx.doi.org/10.1179/174328905x66162
Zhao J. R. ; Li J. Y. ; Feng Y. ; Yin J. H. A novel approach to synthesis of functional CPVC and CPE or graft copolymers: in situ chlorinating graft . Polym. Adv. Technol. , 2007 , 18 ( 10 ), 822 - 828 . doi: 10.1002/pat.941 http://dx.doi.org/10.1002/pat.941
Wang B. X. ; Wan G. P. ; Zhao J. R. ; Feng Y. ; Yin J. H. Synthesis and mechanical properties of chlorinated polyvinyl chloride (CPVC) carboxylate ionomer . Polym. Plast. Technol. Eng. , 2008 , 47 ( 11 ), 1101 - 1104 . doi: 10.1080/03602550802355909 http://dx.doi.org/10.1080/03602550802355909
Meng L. ; Xu C. ; Jing Z. ; Zhao J. R. ; Feng Y. ; Hu H. Q. Preparation of anhydridized chlorinated polyvinyl chloride with enhanced properties and investigation of the factors affecting the chain structure of the graft copolymer . J. Elastomers Plast. , 2015 , 47 ( 2 ), 136 - 152 . doi: 10.1177/0095244313507801 http://dx.doi.org/10.1177/0095244313507801
皮红 , 陈深情 , 郭少云 . 热稳定剂对PVC紫外光老化过程中微观结构及宏观性能演变的影响 . 高分子学报 , 2010 , 41 ( 6 ), 660 - 665 .
马文光 , 张正柏 , 杭国培 . 氯化聚氯乙烯热稳定性研究: Ⅳ . 红外光谱法对稳定剂作用的研究. 高分子学报 , 1989 , 20 ( 6 ), 752 - 755 . doi: 10.1007/BF02943117 http://dx.doi.org/10.1007/BF02943117
Carty P. ; White S. ; Price D. ; Lu L. Smoke-suppression in plasticised chlorinated poly(vinyl chloride) (CPVC) . Polym. Degrad. Stab. , 1999 , 63 ( 3 ), 465 - 468 . doi: 10.1016/s0141-3910(98)00075-5 http://dx.doi.org/10.1016/s0141-3910(98)00075-5
Carty P. ; Price D. ; John Milnes G. Chlorinated poly(vinyl chloride) and plasticized chlorinated poly(vinyl chloride): thermal decomposition studies . J. Vinyl Addit. Technol. , 2002 , 8 ( 4 ), 227 - 237 . doi: 10.1002/vnl.10368 http://dx.doi.org/10.1002/vnl.10368
Elakesh E. O. ; Hull T. R. ; Price D. ; Carty P. Effect of stabilisers and lubricant on the thermal decomposition of chlorinated poly(vinyl chloride) (CPVC) . Polym. Degrad. Stab. , 2005 , 88 ( 1 ), 41 - 45 . doi: 10.1016/j.polymdegradstab.2004.04.027 http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.027
Li A. ; Huang B. Q. ; Wu H. M. ; Zhang W. L. ; Zhou R. ; Ding Y. M. Effects of sample thickness on the combustion and smoke characteristics of chlorinated polyvinyl chloride . J. Appl. Polym. Sci. , 2022 , 139 ( 4 ), 51541 . doi: 10.1002/app.51541 http://dx.doi.org/10.1002/app.51541
Khan Z. ; Merah N. ; Bazoune A. ; Furquan S. Low velocity impact resistance of CPVC pipes exposed to natural outdoor weathering conditions . Adv. Mater. Res. , 2012 , 445 , 959 - 964 . doi: 10.4028/www.scientific.net/amr.445.959 http://dx.doi.org/10.4028/www.scientific.net/amr.445.959
Merah N. ; Bazoune A. ; Khan Z. Artificial and natural weathering of chlorinated polyvinyl chloride (CPVC) . Adv. Mater. Res. , 2013 , 652 - 654 , 1277 - 1282 .
徐文文 , 熊英 , 郭少云 . 硬质聚氯乙烯自然老化的变色行为与分子结构变化 . 高分子学报 , 2017 , ( 08 ), 1374 - 1381 .
刘德中 , 李皆富 , 黄文弢 , 杨曙光 . 高分子复合物纤维的研究进展 . 高分子学报 , 2018 , 49 ( 4 ), 445 - 455 . doi: 10.11777/j.issn1000-3304.2017.17285 http://dx.doi.org/10.11777/j.issn1000-3304.2017.17285
俞森龙 , 相恒学 , 周家良 , 邱天 , 胡泽旭 , 朱美芳 . 典型高分子纤维发展回顾与未来展望 . 高分子学报 , 2020 , 51 ( 1 ), 39 - 54 . doi: 10.11777/j.issn1000-3304.2020.19148 http://dx.doi.org/10.11777/j.issn1000-3304.2020.19148
刘孟竹 . PVC/CPVC发用纤维熔纺制备技术研究 . 大连 : 大连工业大学 , 2015 .
Peijs T. ; Kirschbaum R. ; Lemstra P. J. Chapter 5: a critical review of carbon fiber and related products from an industrial perspective . Adv. Ind. Eng. Polym. Res. , 2022 , 5 ( 2 ), 90 - 106 . doi: 10.1016/j.aiepr.2022.03.008 http://dx.doi.org/10.1016/j.aiepr.2022.03.008
刘瑞刚 , 徐坚 . 国产高性能聚丙烯腈基碳纤维制备技术研究进展 . 科技导报 , 2018 , 36 ( 19 ), 32 - 42 . doi: 10.3981/j.issn.1000-7857.2018.19.006 http://dx.doi.org/10.3981/j.issn.1000-7857.2018.19.006
Kammakakam I. ; Lai Z. P. Next-generation ultrafiltration membranes: a review of material design, properties, recent progress, and challenges . Chemosphere , 2023 , 316 , 137669 . doi: 10.1016/j.chemosphere.2022.137669 http://dx.doi.org/10.1016/j.chemosphere.2022.137669
Liu B. C. ; Chen C. ; Zhang W. ; Crittenden J. ; Chen Y. S. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127 : effect of additives on properties and performance . Desalination , 2012 , 307 , 26 - 33 . doi: 10.1016/j.desal.2012.07.036 http://dx.doi.org/10.1016/j.desal.2012.07.036
Krishnamoorthy L. ; Arif P. M. ; Ahmedkhan R. Separation of proteins from aqueous solution using cellulose acetate/poly(vinyl chloride) blend ultrafiltration membrane . J. Mater. Sci. , 2011 , 46 ( 9 ), 2914 - 2921 . doi: 10.1007/s10853-010-5166-0 http://dx.doi.org/10.1007/s10853-010-5166-0
Mei S. ; Xiao C. F. ; Hu X. Y. Interfacial microvoid formation of poly(vinyl chloride)/polyacrylonitrile blend hollow-fiber membranes . J. Appl. Polym. Sci. , 2012 , 124 ( S1 ): E6 - E16 . doi: 10.1002/app.35387 http://dx.doi.org/10.1002/app.35387
Zhang W. ; Yang H. H. ; Wang J. Effects of inorganic nanoparticle/PEG600 composite additives on properties of chlorinated polyvinyl chloride ultrafiltration membranes . Desalin. Water Treat. , 2019 , 142 , 114 - 124 . doi: 10.5004/dwt.2019.23432 http://dx.doi.org/10.5004/dwt.2019.23432
Kang J. S. ; Kim K. Y. ; Lee Y. M. Preparation of PVP immobilized microporous chlorinated polyvinyl chloride membranes on fabric and their hydraulic permeation behavior . J. Membr. Sci. , 2003 , 214 ( 2 ), 311 - 321 . doi: 10.1016/s0376-7388(02)00597-5 http://dx.doi.org/10.1016/s0376-7388(02)00597-5
Lalia B. S. ; Kochkodan V. ; Hashaikeh R. ; Hilal N. A review on membrane fabrication: structure, properties and performance relationship . Desalination , 2013 , 326 , 77 - 95 . doi: 10.1016/j.desal.2013.06.016 http://dx.doi.org/10.1016/j.desal.2013.06.016
Liu J. Z. ; Su Y. L. ; Peng J. M. ; Zhao X. T. ; Zhang Y. ; Dong Y. N. ; Jiang Z. Y. Preparation and performance of antifouling PVC/CPVC blend ultrafiltration membranes . Ind. Eng. Chem. Res. , 2012 , 51 ( 24 ), 8308 - 8314 . doi: 10.1021/ie300878f http://dx.doi.org/10.1021/ie300878f
刘家桢 . 聚氯乙烯/氯化聚氯乙烯多孔膜的制备及改性研究 . 天津 : 天津大学 , 2013 .
吴瑶瑶 . 氯化聚氯乙烯(CPVC)超滤膜表面亲水化改性的研究 . 上海 : 东华大学 , 2019 .
Higashi M. ; Morita J. ; Shimada N. ; Kitagawa T. Long-term-hydrophilic flat-sheet microfiltration membrane made from chlorinated poly(vinyl chloride) . J. Membr. Sci. , 2016 , 500 , 180 - 189 . doi: 10.1016/j.memsci.2015.11.032 http://dx.doi.org/10.1016/j.memsci.2015.11.032
Zhang C. F. ; Min Y. ; Bai Y. X. ; Gu J. ; Sun Y. P. Fabrication and characterization of chlorinated polyvinyl chloride microporous membranes via thermally induced phase separation process . J. Appl. Polym. Sci. , 2017 , 134 ( 4 ), app . 44346 . doi: 10.1002/app.44346 http://dx.doi.org/10.1002/app.44346
闵瑛 . 热致相分离法制备氯化聚氯乙烯微孔膜及其结构与性能调控 . 无锡 : 江南大学 , 2016 .
Long L. Z. ; Wang S. J. ; Xiao M. ; Meng Y. Z. Polymer electrolytes for lithium polymer batteries . J. Mater. Chem. A , 2016 , 4 ( 26 ), 10038 - 10069 . doi: 10.1039/c6ta02621d http://dx.doi.org/10.1039/c6ta02621d
刘亭亭 , 张建军 , 于喆 , 吴瀚 , 张津宁 , 唐犇 , 崔光磊 . 用于锂二次电池的类三明治结构电解质的研究进展与展望 . 高分子学报 , 2020 , 51 ( 7 ), 710 - 727 . doi: 10.11777/j.issn1000-3304.2019.19196 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19196
Peng L. Q. ; Kong X. B. ; Li H. ; Wang X. ; Shi C. ; Hu T. X. ; Liu Y. Z. ; Zhang P. ; Zhao J. B. A rational design for a high-safety lithium-ion battery assembled with a heatproof-fireproof bifunctional separator . Adv. Funct. Mater. , 2021 , 31 ( 10 ), 2008537 . doi: 10.1002/adfm.202008537 http://dx.doi.org/10.1002/adfm.202008537
Manthiram A. ; Yu X. W. ; Wang S. F. Lithium battery chemistries enabled by solid-state electrolytes . Nat. Rev. Mater. , 2017 , 2 , 16103 . doi: 10.1038/natrevmats.2016.103 http://dx.doi.org/10.1038/natrevmats.2016.103
胡华坤 , 薛文东 , 李勇 , 蒋朋 . 锂离子电池安全性保护措施研究进展 . 高分子学报 , 2022 , 53 ( 05 ), 457 - 473 .
张鹏 , 李琳琳 , 何丹农 , 吴宇平 , 清水真 . 锂离子电池凝胶聚合物电解质研究进展 . 高分子学报 , 2011 , 42 ( 2 ), 125 - 131 . doi: 10.3724/SP.J.1105.2011.10229 http://dx.doi.org/10.3724/SP.J.1105.2011.10229
Zhu M. ; Wu J. X. ; Wang Y. ; Song M. M. ; Long L. ; Siyal S. H. ; Yang X. P. ; Sui G. Recent advances in gel polymer electrolyte for high-performance lithium batteries . J. Energy Chem. , 2019 , 37 , 126 - 142 . doi: 10.1016/j.jechem.2018.12.013 http://dx.doi.org/10.1016/j.jechem.2018.12.013
Khurana R. ; Schaefer J. L. ; Archer L. A. ; Coates G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries . J. Am. Chem. Soc. , 2014 , 136 ( 20 ), 7395 - 7402 . doi: 10.1021/ja502133j http://dx.doi.org/10.1021/ja502133j
Zeng X. X. ; Yin Y. X. ; Li N. W. ; Du W. C. ; Guo Y. G. ; Wan L. J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries . J. Am. Chem. Soc. , 2016 , 138 ( 49 ), 15825 - 15828 . doi: 10.1021/jacs.6b10088 http://dx.doi.org/10.1021/jacs.6b10088
Han L. F. ; Liao C. ; Mu X. W. ; Wu N. ; Xu Z. M. ; Wang J. W. ; Song L. ; Kan Y. C. ; Hu Y. Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al, P-rich SEI layer . Nano Lett. , 2021 , 21 ( 10 ), 4447 - 4453 . doi: 10.1021/acs.nanolett.1c01137 http://dx.doi.org/10.1021/acs.nanolett.1c01137
Zhang X. K. ; Xie J. ; Shi F. F. ; Lin D. C. ; Liu Y. Y. ; Liu W. ; Pei A. ; Gong Y. J. ; Wang H. X. ; Liu K. ; Xiang Y. ; Cui Y. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity . Nano Lett. , 2018 , 18 ( 6 ), 3829 - 3838 . doi: 10.1021/acs.nanolett.8b01111 http://dx.doi.org/10.1021/acs.nanolett.8b01111
Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries . Eur. Polym. J. , 2006 , 42 ( 1 ), 21 - 42 . doi: 10.1016/j.eurpolymj.2005.09.017 http://dx.doi.org/10.1016/j.eurpolymj.2005.09.017
Agnihotri T. ; Ali Ahmed S. ; Tamilarasan E. B. ; Hasan R. ; Su W. N. ; Hwang B. J. Transitioning towards asymmetric gel polymer electrolytes for lithium batteries: progress and prospects . Adv. Funct. Mater. , 2024 , 34 ( 13 ), 2311215 . doi: 10.1002/adfm.202311215 http://dx.doi.org/10.1002/adfm.202311215
Zhou X. Y. ; Zhou Y. F. ; Yu L. ; Qi L. H. ; Oh K. S. ; Hu P. ; Lee S. Y. ; Chen C. J. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications . Chem. Soc. Rev. , 2024 , 53 ( 10 ), 5291 - 5337 . doi: 10.1039/d3cs00551h http://dx.doi.org/10.1039/d3cs00551h
Zhou Y. G. ; Fan L. ; Li H. Q. ; Cui Y. J. ; Yu S. F. ; Wei Z. Z. ; Zhao Y. Fibrous separator with surface modification and micro-nano fibers lamination enabling fast ion transport for lithium-ion batteries . Chinese J. Polym. Sci. , 2023 , 41 ( 2 ), 222 - 232 . doi: 10.1007/s10118-022-2856-4 http://dx.doi.org/10.1007/s10118-022-2856-4
Gong X. ; Xiao Q. ; Li Q. Y. ; Liang W. C. ; Chen F. ; Li L. Y. ; Ren S. J. Cross-linked electrospun gel polymer electrolytes for lithium-ion batteries . Chinese J. Polym. Sci. , 2024 , 42 ( 8 ), 1021 - 1028 . doi: 10.1007/s10118-024-3136-2 http://dx.doi.org/10.1007/s10118-024-3136-2
Meyer W. H. Polymer electrolytes for lithium-ion batteries . Adv. Mater. , 1998 , 10 ( 6 ), 439 - 448 . doi: 10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i http://dx.doi.org/10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i
Fenton D. E. ; Parker J. M. ; Wright P. V. Complexes of alkali metal ions with poly(ethylene oxide) . Polymer , 1973 , 14 ( 11 ), 589 . doi: 10.1016/0032-3861(73)90146-8 http://dx.doi.org/10.1016/0032-3861(73)90146-8
Armand M. Polymer solid electrolytes-an overview . Solid State Ion. , 1983 , 9 , 745 - 754 . doi: 10.1016/0167-2738(83)90083-8 http://dx.doi.org/10.1016/0167-2738(83)90083-8
Rajendran S. ; Sivakumar P. ; Babu R. S. Studies on the salt concentration of a PVdF-PVC based polymer blend electrolyte . J. Power Sources , 2007 , 164 ( 2 ), 815 - 821 . doi: 10.1016/j.jpowsour.2006.09.011 http://dx.doi.org/10.1016/j.jpowsour.2006.09.011
Ahmad A. ; Rahman M. Y. A. ; Su'ait M. S. Preparation and characterization of PVC-LiClO 4 based composite polymer electrolyte . Phys. B Condens. Matter , 2008 , 403 ( 21-22 ), 4128 - 4131 . doi: 10.1016/j.physb.2008.08.021 http://dx.doi.org/10.1016/j.physb.2008.08.021
Arunkumar R. ; Babu R. S. ; Usha Rani M. ; Kalainathan S. Effect of PBMA on PVC-based polymer blend electrolytes . J. Appl. Polym. Sci. , 2017 , 134 ( 27 ), 44939 . doi: 10.1002/app.44939 http://dx.doi.org/10.1002/app.44939
Rajendran S. ; Babu R. ; Sivakumar P. Optimization of PVC-PAN-based polymer electrolytes . J. Appl. Polym. Sci. , 2009 , 113 ( 3 ), 1651 - 1656 . doi: 10.1002/app.30174 http://dx.doi.org/10.1002/app.30174
Shembel E. M. ; Chervakov O. V. ; Neduzhko L. I. ; Maksyuta I. M. ; Polischyk Y. V. ; Reisner D. E. ; Novak P. ; Meshri D. Investigation of the stability of chlorinated PVC-based polymer electrolytes for lithium batteries . J. Power Sources , 2001 , 96 ( 1 ), 20 - 28 . doi: 10.1016/s0378-7753(01)00675-9 http://dx.doi.org/10.1016/s0378-7753(01)00675-9
Gil-Alana L. A. ; Monge M. Lithium: production and estimated consumption. Evidence of persistence . Resour. Policy , 2019 , 60 , 198 - 202 . doi: 10.1016/j.resourpol.2019.01.006 http://dx.doi.org/10.1016/j.resourpol.2019.01.006
Hu Y. C. ; Yu Y. J. ; Huang K. ; Wang L. Development tendency and future response about the recycling methods of spent lithium-ion batteries based on bibliometrics analysis . J. Energy Storage , 2020 , 27 , 101111 . doi: 10.1016/j.est.2019.101111 http://dx.doi.org/10.1016/j.est.2019.101111
Zhang J. L. ; Hu J. T. ; Zhang W. J. ; Chen Y. Q. ; Wang C. Y. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries . J. Clean. Prod. , 2018 , 204 , 437 - 446 . doi: 10.1016/j.jclepro.2018.09.033 http://dx.doi.org/10.1016/j.jclepro.2018.09.033
Armand M. ; Tarascon , J. M. Building better batteries . Nature , 2008 , 451 ( 7179 ), 652 - 657 . doi: 10.1038/451652a http://dx.doi.org/10.1038/451652a
Swain B. Recovery and recycling of lithium: a review . Sep. Purif. Technol. , 2017 , 172 , 388 - 403 . doi: 10.1016/j.seppur.2016.08.031 http://dx.doi.org/10.1016/j.seppur.2016.08.031
Kang D. H. P. ; Chen M. J. ; Ogunseitan O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste . Environ. Sci. Technol. , 2013 , 47 ( 10 ), 5495 - 5503 . doi: 10.1021/es400614y http://dx.doi.org/10.1021/es400614y
Dutta D. ; Kumari A. ; Panda R. ; Jha S. ; Gupta D. ; Goel S. ; Jha M. K. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries . Sep. Purif. Technol. , 2018 , 200 , 327 - 334 . doi: 10.1016/j.seppur.2018.02.022 http://dx.doi.org/10.1016/j.seppur.2018.02.022
Chanda M. Chemical aspects of polymer recycling . Adv. Ind. Eng. Polym. Res. , 2021 , 4 ( 3 ), 133 - 150 . doi: 10.1016/j.aiepr.2021.06.002 http://dx.doi.org/10.1016/j.aiepr.2021.06.002
Al Alshaikh A. ; Bara J. E. Chlorinated plastics offer unique opportunities and challenges in upcycling . Polym. Int. , 2024 , 73 ( 5 ), 341 - 348 . doi: 10.1002/pi.6621 http://dx.doi.org/10.1002/pi.6621
Zhang S. Y. ; Han H. ; Cao M. H. ; Xie Y. P. ; Chen J. X. Upvaluing chlorinated plastic wastes . Interdiscip. Mater. , 2025 , 4 ( 1 ), 5 - 23 . doi: 10.1002/idm2.12211 http://dx.doi.org/10.1002/idm2.12211
Xing M. F. ; Zhang F. S. Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments . Chem. Eng. J. , 2013 , 219 , 131 - 136 . doi: 10.1016/j.cej.2012.12.066 http://dx.doi.org/10.1016/j.cej.2012.12.066
Zhou R. ; Huang B. Q. ; Ding Y. M. ; Li W. J. ; Mu J. J. Thermal decomposition mechanism and kinetics study of plastic waste chlorinated polyvinyl chloride . Polymers , 2019 , 11 ( 12 ), 2080 . doi: 10.3390/polym11122080 http://dx.doi.org/10.3390/polym11122080
Yan S. X. ; Sun C. H. ; Zhou T. ; Gao R. C. ; Xie H. S. Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives . Sep. Purif. Technol. , 2021 , 257 , 117930 . doi: 10.1016/j.seppur.2020.117930 http://dx.doi.org/10.1016/j.seppur.2020.117930
Wang M. M. ; Tan Q. Y. ; Li J. H. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries . Environ. Sci. Technol. , 2018 , 52 ( 22 ), 13136 - 13143 . doi: 10.1021/acs.est.8b03469 http://dx.doi.org/10.1021/acs.est.8b03469
Barik S. P. ; Prabaharan G. ; Kumar L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study . J. Clean. Prod. , 2017 , 147 , 37 - 43 . doi: 10.1016/j.jclepro.2017.01.095 http://dx.doi.org/10.1016/j.jclepro.2017.01.095
Zhang Y. J. ; Meng Q. ; Dong P. ; Duan J. G. ; Lin Y. Use of grape seed as reductant for leaching of cobalt from spent lithium-ion batteries . J. Ind. Eng. Chem. , 2018 , 66 , 86 - 93 . doi: 10.1016/j.jiec.2018.05.004 http://dx.doi.org/10.1016/j.jiec.2018.05.004
Li Y. ; Sun B. ; Feng X. X. ; Guo M. F. ; Li Y. B. ; Hashimoto M. A novel electroactive plasticized polymer actuator based on chlorinated polyvinyl chloride gel . RSC Adv. , 2021 , 11 ( 58 ), 36439 - 36449 . doi: 10.1039/d1ra07245e http://dx.doi.org/10.1039/d1ra07245e
You J. G. ; Cai L. ; Yu R. H. ; Xing H. P. ; Xue J. ; Li Y. ; Jiang Z. W. ; Cui D. M. ; Tang T. High-performance chlorinated polyvinyl chloride/polyurea nanocomposite foam with excellent solvent resistance, flame-triggered shape memory effect and its upcycling . Compos. Part A Appl. Sci. Manuf. , 2024 , 177 , 107931 . doi: 10.1016/j.compositesa.2023.107931 http://dx.doi.org/10.1016/j.compositesa.2023.107931
Hong M. ; Do P. U. ; Lee C. H. ; Park Y. D. Harnessing the potential of porous carbon derived from chlorinated polyvinyl chloride as an effective gas analyte channel for NO 2 organic sensors . Sens. Actuat. B Chem. , 2024 , 421 , 136463 . doi: 10.1016/j.snb.2024.136463 http://dx.doi.org/10.1016/j.snb.2024.136463
He Y. J. ; Zhu B. F. ; Tan S. B. ; Liu Z. X. ; Zhang X. ; Zhang Z. C. Improving the energy storage performance of a chlorinated poly(vinyl chloride) film at elevated electric field and temperature via a simple annealing process . ACS Appl. Energy Mater. , 2023 , 6 ( 10 ), 5407 - 5415 . doi: 10.1021/acsaem.3c00518 http://dx.doi.org/10.1021/acsaem.3c00518
Lu W. J. ; Shi D. Q. ; Zhang H. M. ; Li X. F. Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery . J. Membr. Sci. , 2021 , 620 , 118947 . doi: 10.1016/j.memsci.2020.118947 http://dx.doi.org/10.1016/j.memsci.2020.118947
0
浏览量
76
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构