浏览全部资源
扫码关注微信
1.北京化工大学 化工资源有效利用国家重点实验室 北京 100029
2.北京宇程科技有限公司 北京 102299
3.中国有研科技集团有限公司 国家动力电池创新中心 北京 100088
4.北京化工大学常州先进材料研究院 常州 213164
[ "齐胜利,男,1982年生. 北京化工大学教授、博士生导师. 2008年在北京化工大学获得博士学位,2009~2011年在日本名古屋大学从事JSPS博士后工作. 2014年获得江苏省杰出青年基金,2023年获得石油和化学工业联合会科技进步奖一等奖. 主要研究方向为高性能及功能聚酰亚胺材料的分子设计及其在柔性电子、信息存储及二次能源系统中的应用." ]
收稿日期:2025-04-29,
网络出版日期:2025-09-25,
移动端阅览
徐含睿, 王召意, 刘克凡, 董南希, 贾南方, 王杰, 刘丙学, 蔺道雷, 田国峰, 齐胜利, 武德珍. 抑制锂枝晶生长的锂金属电池功能化聚烯烃隔膜研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25113
Xu, H. R.; Wang, Z. Y.; Liu, K. F.; Dong, N. X.; Jia, N. F.; Wang, J.; Liu, B. X.; Lin, D. L.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Progress on functionalized polyolefin separators for inhibiting dendrite growth in lithium metal batteries. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25113
徐含睿, 王召意, 刘克凡, 董南希, 贾南方, 王杰, 刘丙学, 蔺道雷, 田国峰, 齐胜利, 武德珍. 抑制锂枝晶生长的锂金属电池功能化聚烯烃隔膜研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25113 DOI: CSTR: 32057.14.GFZXB.2025.7452.
Xu, H. R.; Wang, Z. Y.; Liu, K. F.; Dong, N. X.; Jia, N. F.; Wang, J.; Liu, B. X.; Lin, D. L.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Progress on functionalized polyolefin separators for inhibiting dendrite growth in lithium metal batteries. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25113 DOI: CSTR: 32057.14.GFZXB.2025.7452.
以金属锂为负极的锂金属电池,因其高理论容量(3860 mAh·g
-1
)和低电位(-3.040 V versus标准氢电极),有望成为极具前景的下一代高比能电池. 然而,锂负极表面枝晶生长和锂金属的持续损耗导致电池的循环寿命短,甚至造成安全隐患,严重阻碍了其商业化进程. 近年来,功能化聚烯烃隔膜在抑制锂枝晶方面展现出显著成效,能有效抑制锂枝晶的形成与生长. 本文综述了用于抑制锂枝晶生长的锂金属电池功能化聚烯烃隔膜的研究,介绍功能化聚烯烃隔膜抑制锂枝晶生长的构筑原理、关键特性及界面工程挑战;然后重点介绍了抑制锂枝晶生长的无机材料改性隔膜和聚合物基复合隔膜的特性及研究进展;最后结合当前研究,对抑制锂枝晶生长的功能化聚烯烃隔膜的未来发展方向和前景进行了展望. 本综述为实现高性能和高安全性的锂金属电池提供了新的思路和方向.
Lithium metal batteries (LMBs) with pure lithium metal as the anode
due to the high theoretical capacity (3860 mAh·g
-1
) and low potential (-3.040 V versus standard hydrogen electrode)
have been considered to the most promising energy systems for the next-generation high-energy battery. However
the problem of lithium dendrite growth on the surface of the lithium anode and the continuous loss of active lithium metal during charge-discharge process
have caused significantly reduced cycle life and critical safety hazards
seriously hindering the commercialization process of LMBs. To inhibit lithium dendrite
in recent years
functionalized polyolefin separators have been developed and manife
sted significant effects in suppressing the formation and growth of lithium dendrites. This paper reviews the research and application progress of functionalized polyolefin separators for LMBs in inhibiting lithium dendrite growth. Firstly
the key characteristics of functionalized polyolefin separators for inhibiting lithium dendrite are introduced. Then
the research progress of inorganic material-modified separators and polymer-based composite separators for inhibiting lithium dendrite are summarized
and their mechanisms and effects are discussed. Finally
based on the research progress and pioneering works in this field
we prospect the future development direction and potentials of functionalized polyolefin separators for inhibiting lithium dendrite growth. This review provides valuable references and directions for the achievement of high-performance and high-safety LMBs.
Armand M. ; Tarascon , J. M. Building better batteries . Nature , 2008 , 451 ( 7179 ), 652 - 657 . doi: 10.1038/451652a http://dx.doi.org/10.1038/451652a
Lin D. C. ; Liu Y. Y. ; Cui Y. Reviving the lithium metal anode for high-energy batteries . Nat. Nanotechnol. , 2017 , 12 ( 3 ), 194 - 206 . doi: 10.1038/nnano.2017.16 http://dx.doi.org/10.1038/nnano.2017.16
Schmuch R. ; Wagner R. ; Hörpel G. ; Placke T. ; Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries . Nat. Energy , 2018 , 3 ( 4 ), 267 - 278 . doi: 10.1038/s41560-018-0107-2 http://dx.doi.org/10.1038/s41560-018-0107-2
程新兵 , 张强 . 金属锂枝晶生长机制及抑制方法 . 化学进展 , 2018 , 30 ( 1 ), 51 - 72 .
Zhao H. Y. ; Liao C. L. ; Zhang C. Z. ; Wang L. Y. ; Wang L. F. Phase-field modeling of lithium dendrite deposition process: when an internal short circuit occurs . J. Energy Storage , 2024 , 100 , 113779 . doi: 10.1016/j.est.2024.113779 http://dx.doi.org/10.1016/j.est.2024.113779
Qin K. Q. ; Holguin K. ; Mohammadiroudbari M. ; Huang J. H. ; Kim E. Y. S. ; Hall R. ; Luo C. Strategies in structure and electrolyte design for high-performance lithium metal batteries . Adv. Funct. Mater. , 2021 , 31 ( 15 ), 2009694 . doi: 10.1002/adfm.202009694 http://dx.doi.org/10.1002/adfm.202009694
Gao M. D. ; Li H. ; Xu L. ; Xue Q. ; Wang X. R. ; Bai Y. ; Wu C. Lithium metal batteries for high energy density: fundamental electrochemistry and challenges . J. Energy Chem. , 2021 , 59 , 666 - 687 . doi: 10.1016/j.jechem.2020.11.034 http://dx.doi.org/10.1016/j.jechem.2020.11.034
Cheng H. C. ; Tan R. Q. ; Li J. ; Huang J. H. ; Song W. J. Coatings on lithium battery separators: a strategy to inhibit lithium dendrites growth . Molecules , 2023 , 28 ( 23 ), 7788 . doi: 10.3390/molecules28237788 http://dx.doi.org/10.3390/molecules28237788
Wu H. P. ; Chen L. B. ; Chen Y. J. A mini-review of advanced separator engineering in lithium metal batteries . Sustainable Energy Fuels , 2021 , 5 ( 22 ), 5656 - 5671 . doi: 10.1039/d1se01152a http://dx.doi.org/10.1039/d1se01152a
Ren W. C. ; Zheng Y. N. ; Cui Z. H. ; Tao Y. S. ; Li B. X. ; Wang W. T. Recent progress of functional separators in dendrite inhibition for lithium metal batteries . Energy Storage Mater. , 2021 , 35 , 157 - 168 . doi: 10.1016/j.ensm.2020.11.019 http://dx.doi.org/10.1016/j.ensm.2020.11.019
刘志宏 , 柴敬超 , 张建军 , 崔光磊 . 高性能纤维素基复合锂离子电池隔膜研究进展 . 高分子学报 , 2015 , ( 11 ), 1246 - 1257 .
Dai X. K. ; Yu F. S. ; Wen J. W. ; Wang C. X. ; Ma X. L. ; Yang W. ; Huang G. Y. ; Ye H. M. Robust and high-wettability pristine poly(ether ether ketone) nanofiber separator for heat-resistant and safe lithium-ion battery . Chinese J. Polym. Sci. , 2023 , 41 ( 12 ), 1937 - 1946 . doi: 10.1007/s10118-023-3002-7 http://dx.doi.org/10.1007/s10118-023-3002-7
Li Y. ; Pan C. ; Gan F. ; Lin Z. X. ; Yu J. C. ; Wei Z. Z. ; Zhao Y. Robust composite separator randomly interwoven by PI and pre-oxidized PAN nanofibers for high performance lithium-ion batteries . Chinese J. Polym. Sci. , 2024 , 42 ( 11 ), 1768 - 1779 . doi: 10.1007/s10118-024-3180-y http://dx.doi.org/10.1007/s10118-024-3180-y
Hao Z. D. ; Zhao Q. ; Tang J. D. ; Zhang Q. Q. ; Liu J. B. ; Jin Y. H. ; Wang H. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries . Mater. Horiz. , 2021 , 8 ( 1 ), 12 - 32 . doi: 10.1039/d0mh01167c http://dx.doi.org/10.1039/d0mh01167c
Huang X. Z. ; He R. ; Li M. ; Chee M. O. L. ; Dong P. ; Lu J. Functionalized separator for next-generation batteries . Mater. Today , 2020 , 41 , 143 - 155 . doi: 10.1016/j.mattod.2020.07.015 http://dx.doi.org/10.1016/j.mattod.2020.07.015
韩雨 , 曹盛玲 , 宁靖 , 王康丽 , 蒋凯 , 周敏 . 聚合物改性锂金属电池界面策略研究综述 . 储能科学与技术 , 2023 , 12 ( 8 ), 2491 - 2503 .
钟国彬 , 姚鑫 , 刘永超 , 侯倩 , 项宏发 . 锂离子电池高安全复合隔膜的挑战和未来展望 . 储能科学与技术 , 2024 , 13 ( 6 ), 1794 - 1806 .
Lei Y. ; Xu L. L. ; Chan Q. N. ; Li A. ; Yuen A. C. Y. ; Yuan Y. ; Yeoh G. H. ; Wang W. Recent advances in separator design for lithium metal batteries without dendrite formation: implications for electric vehicles . eTransportation , 2024 , 20 , 100330 . doi: 10.1016/j.etran.2024.100330 http://dx.doi.org/10.1016/j.etran.2024.100330
Luo Z. X. ; Sun H. H. ; Zhao Y. M. ; Ren L. B. ; Xu F. ; Wang J. G. Separator engineering for high-energy rechargeable metal batteries: fundamentals, design strategies and perspectives . Energy Storage Mater. , 2025 , 80 , 104421 . doi: 10.1016/j.ensm.2025.104421 http://dx.doi.org/10.1016/j.ensm.2025.104421
Kim P. J. Surface-functionalized separator for stable and reliable lithium metal batteries: a review . Nanomaterials , 2021 , 11 ( 9 ), 2275 . doi: 10.3390/nano11092275 http://dx.doi.org/10.3390/nano11092275
Favors Z. ; Wang W. ; Bay H. H. ; George A. ; Ozkan M. ; Ozkan C. S. Stable cycling of SiO₂ nanotubes as high-performance anodes for lithium-ion batteries . Sci. Rep. , 2014 , 4 , 4605 . doi: 10.1038/srep04605 http://dx.doi.org/10.1038/srep04605
Liu K. ; Zhuo D. ; Lee H. W. ; Liu W. ; Lin D. C. ; Lu Y. Y. ; Cui Y. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator . Adv. Mater. , 2017 , 29 ( 4 ), 1603987 . doi: 10.1002/adma.201603987 http://dx.doi.org/10.1002/adma.201603987
Ren W. X. ; Zhu K. R. ; Zhang W. ; Liang H. C. ; Xu L. ; Wang L. P. ; Yang C. C. ; Yang Y. ; Zhang P. F. ; Wang F. ; Wang Y. G. ; Li W. Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator . Adv. Funct. Mater. , 2023 , 33 ( 34 ), 2301586 . doi: 10.1002/adfm.202301586 http://dx.doi.org/10.1002/adfm.202301586
Yang L. ; Gao X. X. ; Li J. J. ; Gao Y. ; Zhang M. Y. ; Bai Y. Z. ; Liu G. J. ; Dong H. Y. ; Sheng L. ; Wang T. ; Huang X. L. ; He J. P. Anchoring carbon spheres on titanium dioxide modified commercial polyethylene (PE) separator to suppress lithium dendrites for lithium metal batteries . Small , 2024 , 20 ( 27 ), 2310915 . doi: 10.1002/smll.202310915 http://dx.doi.org/10.1002/smll.202310915
Wang M. M. ; Wang J. R. ; Si J. T. ; Chen F. ; Cao K. ; Chen C. H. Bifunctional composite separator with redistributor and anion absorber for dendrites-free and fast-charging lithium metal batteries . Chem. Eng. J. , 2022 , 430 , 132971 . doi: 10.1016/j.cej.2021.132971 http://dx.doi.org/10.1016/j.cej.2021.132971
Zu C. X. ; Li J. M. ; Cai B. R. ; Qiu J. L. ; Zhao Y. ; Yang Q. ; Li H. ; Yu H. G. Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes . J. Power Sources , 2023 , 555 , 232336 . doi: 10.1016/j.jpowsour.2022.232336 http://dx.doi.org/10.1016/j.jpowsour.2022.232336
Huang Z. J. ; Han Z. Y. ; Jiang B. Z. ; Zhang Y. B. ; Gu S. C. ; Zhang C. ; Pan Z. Z. ; Nishihara H. ; Yang Q. H. ; Lv W. Regulating Li-ion flux through a dense yet highly ionic conductive interlayer for stable Li deposition . Adv. Mater. Interfaces , 2022 , 9 ( 17 ), 2200457 . doi: 10.1002/admi.202200457 http://dx.doi.org/10.1002/admi.202200457
Yan J. ; Liu F. Q. ; Gao J. ; Zhou W. D. ; Huo H. ; Zhou J. J. ; Li L. Low-cost regulating lithium deposition behaviors by transition metal oxide coating on separator . Adv. Funct. Mater. , 2021 , 31 ( 16 ), 2007255 . doi: 10.1002/adfm.202007255 http://dx.doi.org/10.1002/adfm.202007255
Guo Y. ; Wu Q. ; Liu L. W. ; Li G. C. ; Yang L. J. ; Wang X. Z. ; Ma Y. W. ; Hu Z. Thermally conductive AlN-network shield for separators to achieve dendrite-free plating and fast Li-ion transport toward durable and high-rate lithium-metal anodes . Adv. Sci. , 2022 , 9 ( 18 ), 2200411 . doi: 10.1002/advs.202200411 http://dx.doi.org/10.1002/advs.202200411
Tang W. M. ; Zhao T. ; Wang K. ; Yu T. Y. ; Lv R. X. ; Li L. ; Wu F. ; Chen R. J. Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators . Adv. Funct. Mater. , 2024 , 34 ( 18 ), 2314045 . doi: 10.1002/adfm.202314045 http://dx.doi.org/10.1002/adfm.202314045
Yan M. ; Wang C. Y. ; Fan M. ; Zhang Y. Y. ; Xin S. ; Yue J. P. ; Zeng X. X. ; Liang J. Y. ; Song Y. X. ; Yin Y. X. ; Wen R. ; Liu Z. T. ; Wan L. J. ; Guo Y. G. In situ derived mixed ion/electron conducting layer on top of a functional separator for high-performance, dendrite-free rechargeable lithium-metal batteries . Adv. Funct. Mater. , 2024 , 34 ( 5 ), 2301638 . doi: 10.1002/adfm.202301638 http://dx.doi.org/10.1002/adfm.202301638
Ma Y. T. ; Qu W. J. ; Hu X. ; Qian J. ; Li Y. ; Li L. ; Lu H. ; Du H. L. ; Wu F. ; Chen R. J. Induction/inhibition effect on lithium dendrite growth by a binary modification layer on a separator . ACS Appl. Mater. Interfaces , 2022 , 14 ( 39 ), 44338 - 44344 . doi: 10.1021/acsami.2c11380 http://dx.doi.org/10.1021/acsami.2c11380
Lyu S. L. ; Zhang X. ; Huang S. ; Wang S. J. ; Xiao M. ; Han D. M. ; Meng Y. Z. Long-term stable cycling of dendrite-free lithium metal batteries using ZIF-90@PP composite separator . Nanomaterials , 2024 , 14 ( 11 ), 975 . doi: 10.3390/nano14110975 http://dx.doi.org/10.3390/nano14110975
Liu Y. ; Hou T. Y. ; Zhang W. ; Gou B. ; Li F. Q. ; Wang H. N. ; Deng X. ; Li D. G. ; Xu H. H. ; Huang Y. H. Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries . Interdiscip. Mater. , 2025 , 4 ( 1 ), 190 - 200 . doi: 10.1002/idm2.12225 http://dx.doi.org/10.1002/idm2.12225
Li H. Y. ; Hong C. ; Tao R. M. ; Liu X. L. ; Wang J. X. ; Chen J. Y. ; Yao S. H. ; Geng J. Z. ; Zheng G. ; Liang J. Y. Hybrid conductive-lithophilic-fluoride triple protection interface engineering: dendrite-free reverse lithium deposition for high-performance lithium metal batteries . J. Energy Chem. , 2025 , 101 , 416 - 428 . doi: 10.1016/j.jechem.2024.10.002 http://dx.doi.org/10.1016/j.jechem.2024.10.002
Han D. Z. ; Wang X. W. ; Zhou Y. N. ; Zhang J. Y. ; Liu Z. X. ; Xiao Z. C. ; Zhou J. Q. ; Wang Z. ; Zheng J. F. ; Jia Z. H. ; Tian B. B. ; Xie J. Y. ; Liu Z. L. ; Tang W. A graphene-coated thermal conductive separator to eliminate the dendrite-induced local hotspots for stable lithium cycling . Adv. Energy Mater. , 2022 , 12 ( 25 ), 2201190 . doi: 10.1002/aenm.202201190 http://dx.doi.org/10.1002/aenm.202201190
Liang Y. X. ; Wu J. L. ; Cai S. Y. ; Ren H. P. ; Wu B. ; Hua Y. Z. ; Wei Z. Z. ; Zhao Y. Ionic transport regulation separator co-functionalized by conductive nanoparticles and nonconductive nanorods for high performance lithium battery . J. Power Sources , 2025 , 640 , 236725 . doi: 10.1016/j.jpowsour.2025.236725 http://dx.doi.org/10.1016/j.jpowsour.2025.236725
Pham Q. T. ; Chern C. S. Applications of polymers in lithium-ion batteries with enhanced safety and cycle life . J. Polym. Res. , 2022 , 29 ( 4 ), 124 . doi: 10.1007/s10965-022-02946-2 http://dx.doi.org/10.1007/s10965-022-02946-2
Huo H. Y. ; Li X. N. ; Chen Y. ; Liang J. N. ; Deng S. X. ; Gao X. J. ; Doyle-Davis K. ; Li R. Y. ; Guo X. X. ; Shen Y. ; Nan C. W. ; Sun X. L. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries . Energy Storage Mater. , 2020 , 29 , 361 - 366 . doi: 10.1016/j.ensm.2019.12.022 http://dx.doi.org/10.1016/j.ensm.2019.12.022
Li B. X. ; Kang X. ; Wu X. F. ; Hu X. L. Multiple uniform lithium-ion transport channels in Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 /Ce(OH) 3 modified polypropylene composite separator for high-performance lithium metal batteries . J. Colloid Interface Sci. , 2024 , 671 , 621 - 630 . doi: 10.1016/j.jcis.2024.05.184 http://dx.doi.org/10.1016/j.jcis.2024.05.184
Boateng B. ; Han Y. P. ; Zhen C. ; Zeng G. F. ; Chen N. ; Chen D. J. ; Feng C. ; Han J. C. ; Xiong J. ; Duan X. F. ; He W. D. Organosulfur compounds enable uniform lithium plating and long-term battery cycling stability . Nano Lett. , 2020 , 20 ( 4 ), 2594 - 2601 . doi: 10.1021/acs.nanolett.0c00074 http://dx.doi.org/10.1021/acs.nanolett.0c00074
Wang K. ; Zhao T. ; Lv R. X. ; Tang W. M. ; Yu T. Y. ; Chen G. S. ; Li L. ; Wu F. ; Chen R. J. Dendrite-free lithium-metal batteries enabled by 2D lithophilic conjugated polymer on separator . Adv. Energy Mater. , 2024 , 14 ( 29 ), 2401281 . doi: 10.1002/aenm.202401281 http://dx.doi.org/10.1002/aenm.202401281
Chen D. C. ; Hong M. Y. ; Wan J. L. ; Li W. S. ; Liao Y. H. TPFPP@PMMA core-shell polymer modified flame retardant separator achieved by aqueous technique for high-voltage lithium metal batteries . React. Funct. Polym. , 2025 , 207 , 106130 . doi: 10.1016/j.reactfunctpolym.2024.106130 http://dx.doi.org/10.1016/j.reactfunctpolym.2024.106130
Ma S. S. ; Lin H. ; Yang L. Y. ; Tong Q. S. ; Pan F. ; Weng J. Z. ; Zheng S. N. High thermal stability and low impedance polypropylene separator coated with aluminum phosphate . Electrochim. Acta , 2019 , 320 , 134528 . doi: 10.1016/j.electacta.2019.07.039 http://dx.doi.org/10.1016/j.electacta.2019.07.039
Hu L. N. ; Wang X. H. ; Bai M. H. ; Song H. J. ; Fu Z. ; Zhong X. L. ; Wang J. B. A viscous oligomer multifunctional separator coating to enable high specific energy lithium-sulfur battery . Ionics , 2024 , 30 ( 6 ), 3223 - 3229 . doi: 10.1007/s11581-024-05531-3 http://dx.doi.org/10.1007/s11581-024-05531-3
Zhang Y. ; Hua Y. C. ; Zhao G. Q. ; Tu F. Y. ; Li T. B. ; Li M. G. ; Fu L. J. ; Yang C. H. ; Tang A. D. ; Yang H. M. Separators modified with ultrathin montmorillonite/polymer nanocoatings achieve dendrite-free lithium deposition at high current densities . Nano Lett. , 2024 , 24 ( 29 ), 8834 - 8842 . doi: 10.1021/acs.nanolett.4c01221 http://dx.doi.org/10.1021/acs.nanolett.4c01221
Wang Z. Y. ; Liu F. Z. ; Li X. G. ; Liu B. X. ; Lin D. L. ; Tian G. F. ; Qi S. L. ; Wu D. Z. Dual-functional separators regulating ion transport enabled by 3D-reinforced polyimide microspheres protective layer for dendrite-free and high-temperature lithium metal batteries . ACS Appl. Mater. Interfaces , 2024 , 16 ( 18 ), 23826 - 23837 .
徐明礼 , 李琇廷 , 董杰 , 滕翠青 , 张清华 , 赵昕 . 基于聚酰亚胺改性聚烯烃复合隔膜的制备及其性能 . 东华大学学报(自然科学版) , 2025 , 51 ( 1 ), 22 - 30 .
Zhou K. J. ; Bao M. X. ; Fang Y. K. ; He P. ; Ren J. G. ; Zong W. ; Zhang L. S. ; Liu T. X. Single-atom zirconium coordination polyimide aerogel as separator coating toward high-rate lithium metal battery . Adv. Funct. Mater. , 2025 , 35 ( 1 ), 2411963 . doi: 10.1002/adfm.202411963 http://dx.doi.org/10.1002/adfm.202411963
Sun S. Y. ; Wang J. N. ; Chen X. ; Ma Q. Y. ; Wang Y. Y. ; Yang K. ; Yao X. H. ; Yang Z. P. ; Liu J. W. ; Xu H. ; Cai Q. ; Zhao Y. L. ; Yan W. Thermally stable and dendrite-resistant separators toward highly robust lithium metal batteries . Adv. Energy Mater. , 2022 , 12 ( 41 ), 2202206 . doi: 10.1002/aenm.202270172 http://dx.doi.org/10.1002/aenm.202270172
Wang H. H. ; Wang J. ; Niu H. Z. ; Cao R. ; Shu K. W. ; Chen C. X. ; Yuan W. ; Li X. S. ; Han Y. ; Li J. H. ; Shang X. Y. Polydopamine doped hexagonal boron nitride coating separator with excellent heat resistance and wettability for high-performance lithium metal batteries . J. Appl. Polym. Sci. , 2025 , 142 ( 23 ), e 56996 . doi: 10.1002/app.56996 http://dx.doi.org/10.1002/app.56996
Yang T. ; Xu X. J. ; Chen S. P. ; Yang Y. ; Li F. K. ; Fan W. Z. ; Wu Y. X. ; Zhao J. W. ; Liu J. ; Huo Y. P. A lithiophilic donor-acceptor polymer modified separator for high-performance lithium metal batteries . Angew. Chem. Int. Ed. , 2025 , 64 ( 9 ), e 202420973 . doi: 10.1002/anie.202420973 http://dx.doi.org/10.1002/anie.202420973
0
浏览量
138
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构