浏览全部资源
扫码关注微信
1.东华大学,材料科学与工程学院,上海 201620
2.东华大学,纺织科技创新中心,上海 201620
3.东华大学,纤维改性材料国家重点实验室,上海 201620
E-mail: wuj@dhu.edu.cn
收稿日期:2025-05-23,
录用日期:2025-07-11,
网络出版日期:2025-08-15,
移动端阅览
张耀威, 陈咏, 乌婧, 王华平. 聚丁二酸异己糖醇酯的制备与熔融缩聚反应动力学. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25133
Zhang, Y. W.; Chen, Y.; Wu, J.; Wang, H. P. Preparation of poly(isohexides succinate) and kinetics of its melt polycondensation reaction. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25133
张耀威, 陈咏, 乌婧, 王华平. 聚丁二酸异己糖醇酯的制备与熔融缩聚反应动力学. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25133 DOI: CSTR: 32057.14.GFZXB.2025.7449.
Zhang, Y. W.; Chen, Y.; Wu, J.; Wang, H. P. Preparation of poly(isohexides succinate) and kinetics of its melt polycondensation reaction. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25133 DOI: CSTR: 32057.14.GFZXB.2025.7449.
异己糖醇作为一种新型的生物基单体,已被广泛用于聚合物合成,但其反应活性较低,难以合成高分子量的聚合物. 为此,考察其反应动力学规律、建立动力学模型对于理解反应机理和开发更高效的合成技术是十分必要的. 本研究以异山梨醇(IS)、异甘露醇(IM)和丁二酸(SA)为单体,通过熔融酯化缩聚反应制备聚丁二酸异己糖醇酯,并构建酯化和缩聚动力学模型. 结果表明,由于氢键作用,IS/SA体系的酯化率和聚酯分子量均低于IM/SA体系. IS/SA体系的酯化和缩聚活化能分别为93.68和50.09 kJ·mol
-1
. IM/SA体系的酯化和缩聚活化能分别为51.50和64.75 kJ·mol
-1
.
As a new type of bio-based monomer
isosorbide has been widely used in polymer synthesis. However
its reacti
on activity is low
which makes it difficult to produce high molecular weight polymer. Therefore
studying its reaction kinetics and developing a kinetic model are essential to understand the reaction mechanism and enhance synthesis techniques. In this study
isosorbide (IS)
isomannide (IM)
and succinic acid (SA) were used as monomers to prepare poly(isohexides succinate) by esterification and polycondensation melt reaction
and the kinetic models were established. The results show that
due to hydrogen bonding
both the esterification rate and the molecular weight of the IS/SA system are lower than those of the IM/SA system. The activation energies for esterification and polycondensation of the IS/SA system are 93.6 and 50.09 kJ·mol
-1
respectively. For the IM/SA system
the activation energies are 51.5 and 64.75 kJ·mol
-1
.
联合国环境规划署 . 关掉塑料水龙头: 世界如何终结塑料污染并创造循环经济 . [ 2023-05-16 ] .
周大旺 , 乌婧 , 杨建平 , 陈烨 , 吉鹏 , 王华平 . 纤维微塑料的研究现状及其削减策略 . 纺织学报 , 2021 , 42 ( 6 ), 8 - 17 . doi: 10.13475/j.fzxb.20210206310 http://dx.doi.org/10.13475/j.fzxb.20210206310
Wang C. H. ; Zhao J. ; Xing B. S. Environmental source, fate, and toxicity of microplastics . J. Hazard. Mater. , 2021 , 407 , 124357 . doi: 10.1016/j.jhazmat.2020.124357 http://dx.doi.org/10.1016/j.jhazmat.2020.124357
García-Martín M. G. ; Pérez R. R. ; Hernández E. B. ; Espartero J. L. ; Muñoz-Guerra S. ; Galbis J. A. Carbohydrate-based polycarbonates. synthesis, structure, and biodegradation studies . Macromolecules , 2005 , 38 ( 21 ), 8664 - 8670 . doi: 10.1021/ma050676k http://dx.doi.org/10.1021/ma050676k
Chen W. ; Meng F. H. ; Cheng R. ; Deng C. ; Feijen J. ; Zhong Z. Y. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers . J. Control. Release , 2014 , 190 , 398 - 414 . doi: 10.1016/j.jconrel.2014.05.023 http://dx.doi.org/10.1016/j.jconrel.2014.05.023
Liu X. L. ; Desilles N. ; Lebrun L. Polyesters from renewable 1,4:3,6-dianhydrohexitols for food packaging: synthesis, thermal, mechanical and barrier properties . Eur. Polym. J. , 2020 , 134 , 109846 . doi: 10.1016/j.eurpolymj.2020.109846 http://dx.doi.org/10.1016/j.eurpolymj.2020.109846
Wang Y. N. ; Wu J. ; Koning C. E. ; Wang H. P. Short-process synthetic strategies of sustainable isohexide-based polyesters towards higher molecular weight and commercial applicability . Green Chem. , 2022 , 24 ( 22 ), 8637 - 8670 . doi: 10.1039/d2gc02608b http://dx.doi.org/10.1039/d2gc02608b
Chen J. L. ; Wu J. ; Sherrell P. C. ; Chen J. ; Wang H. P. ; Zhang W. X. ; Yang J. P. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling . Adv. Sci. , 2022 , 9 ( 6 ), 2103764 . doi: 10.1002/advs.202103764 http://dx.doi.org/10.1002/advs.202103764
Qi J. F. ; Wu J. ; Chen J. Y. ; Wang H. P. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide . Polym. Degrad. Stabil. , 2019 , 160 , 229 - 241 . doi: 10.1016/j.polymdegradstab.2018.12.031 http://dx.doi.org/10.1016/j.polymdegradstab.2018.12.031
van Es D. S. Rigid biobased building blocks: current developments and outlook . ChemInform , 2015 , 44 , 61 - 72 .
Jang H. ; Park G. ; Kwon S. ; Park S. I. Biodegradability of renewable isosorbide and sebacate-based copolyesters . Polym. Degrad. Stabil. , 2024 , 228 , 110931 . doi: 10.1016/j.polymdegradstab.2024.110931 http://dx.doi.org/10.1016/j.polymdegradstab.2024.110931
Okada M. ; Okada Y. ; Tao A. ; Aoi K. Biodegradable polymers based on renewable resources: polyesters composed of 1,4:3,6-dianhydrohexitol and aliphatic dicarboxylic acid units . J. Appl. Polym. Sci. , 1996 , 62 ( 13 ), 2257 - 2265 . doi: 10.1002/(sici)1097-4628(19961226)62:13<2257::aid-app10>3.3.co;2-1 http://dx.doi.org/10.1002/(sici)1097-4628(19961226)62:13<2257::aid-app10>3.3.co;2-1
Okada M. ; Tsunoda K. ; Tachikawa K. ; Aoi K. Biodegradable polymers based on renewable resources . IV. Enzymatic degradation of polyesters composed of 1 , 4 : 3 .6-dianhydro-D-glucitol and aliphatic dicarboxylic acid moieties. J. Appl. Polym. Sci., 2000, 77 ( 2 ), 338 - 346 . doi: 10.1002/(sici)1097-4628(20000711)77:2<338::aid-app9>3.0.co;2-c http://dx.doi.org/10.1002/(sici)1097-4628(20000711)77:2<338::aid-app9>3.0.co;2-c
Okada M. ; Okada Y. ; Aoi K. Synthesis and degradabilities of polyesters from 1,4:3,6-dianhydrohexitols and aliphatic dicarboxylic acids . J. Polym. Sci. Part A Polym. Chem. , 1995 , 33 ( 16 ), 2813 - 2820 . doi: 10.1002/pola.1995.080331615 http://dx.doi.org/10.1002/pola.1995.080331615
Noordover B. A. J. ; van Staalduinen V. G. ; Duchateau R. ; Koning C. E. ; van Benthem R. A. T. M. ; Mak M. ; Heise A. ; Frissen A. E. ; van Haveren J. Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization . Biomacromolecules , 2006 , 7 ( 12 ), 3406 - 3416 . doi: 10.1021/bm060713v http://dx.doi.org/10.1021/bm060713v
Thiem J. ; Lüders H. Synthesis and properties of polyurethanes derived from diaminodianhydroalditols . Die Makromol. Chem. , 1986 , 187 ( 12 ), 2775 - 2785 . doi: 10.1002/macp.1986.021871204 http://dx.doi.org/10.1002/macp.1986.021871204
Caouthar A. A. ; Loupy A. ; Bortolussi M. ; Blais J. C. ; Dubreucq L. ; Meddour A. Synthesis and characterization of new polyamides based on diphenylaminoisosorbide . J. Polym. Sci., PartA: Polym. Chem. , 2005 , 43 ( 24 ), 2480 - 2491 . doi: 10.1002/pola.21116 http://dx.doi.org/10.1002/pola.21116
Zhang M. ; Lai W. Q. ; Su L. L. ; Wu G. Z. Effect of catalyst on the molecular structure and thermal properties of isosorbide polycarbonates . Ind. Eng. Chem. Res. , 2018 , 57 ( 14 ), 4824 - 4831 . doi: 10.1021/acs.iecr.8b00241 http://dx.doi.org/10.1021/acs.iecr.8b00241
Ochoa-Gómez J. R. ; Lorenzo-Ibarreta L. ; Diñeiro-García C. ; Gómez-Jiménez-Aberasturi O. Isosorbide bis(methyl carbonate) synthesis from isosorbide and dimethyl carbonate: the key role of dual basic-nucleophilic catalysts . RSC Adv. , 2020 , 10 ( 32 ), 18728 - 18739 . doi: 10.1039/d0ra03552a http://dx.doi.org/10.1039/d0ra03552a
Li J. R. ; Spina A. ; Moulijn J. A. ; Makkee M. Sorbitol dehydration into isosorbide in a molten salt hydrate medium . Catal. Sci. Technol. , 2013 , 3 ( 6 ), 1540 - 1546 . doi: 10.1039/c3cy20809e http://dx.doi.org/10.1039/c3cy20809e
Op de Beeck B. ; Geboers J. ; Van de Vyver S. ; Van Lishout J. ; Snelders J. ; Huijgen W. J. J. ; Courtin C. M. ; Jacobs P. A. ; Sels B. F. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon . ChemSusChem , 2013 , 6 ( 1 ), 199 - 208 . doi: 10.1002/cssc.201200610 http://dx.doi.org/10.1002/cssc.201200610
Jin C. H. ; Liu L. P. ; Tu Z. ; Wang B. ; Wang P. ; Wei Z. Y. Melt polycondensation of 2 , 5 -tetrahydrofurandimethanol with various dicarboxylic acids towards a variety of biobased polyesters . Polym. Chem., 2022, 13 ( 40 ), 5718 - 5729 . doi: 10.1039/d2py00975g http://dx.doi.org/10.1039/d2py00975g
刘晓辉 . 聚丁二酸丁二醇酯的合成及其性能 . 北京服装学院硕士学位论文 , 2008 .
Legrand S. ; Jacquel N. ; Amedro H. ; Saint-Loup R. ; Colella M. ; Pascault J. P. ; Fenouillot F. ; Rousseau A. Isosorbide and tricyclodecanedimethanol for the synthesis of amorphous and high T g partially biobased copolyesters . ACS Sustainable Chem. Eng. , 2020 , 8 ( 40 ), 15199 - 15208 . doi: 10.1021/acssuschemeng.0c04679 http://dx.doi.org/10.1021/acssuschemeng.0c04679
Terzopoulou Z. ; Karakatsianopoulou E. ; Kasmi N. ; Tsanaktsis V. ; Nikolaidis N. ; Kostoglou M. ; Papageorgiou G. Z. ; Lambropoulou D. A. ; Bikiaris D. N. Effect of catalyst type on molecular weight increase and coloration of poly(ethylene furanoate) biobased polyester during melt polycondensation . Polym. Chem. , 2017 , 8 ( 44 ), 6895 - 6908 . doi: 10.1039/c7py01171g http://dx.doi.org/10.1039/c7py01171g
Yu T. ; Chang H. B. ; Lai W. P. ; Chen X. F. Computational study of esterification between succinic acid and ethylene glycol in the absence of foreign catalyst and solvent . Polym. Chem. , 2011 , 2 ( 4 ), 892 - 896 . doi: 10.1039/c0py00381f http://dx.doi.org/10.1039/c0py00381f
Bhat N. S. ; Vinod N. ; Tarafder K. ; Nayak M. K. ; Jana A. ; Mal S. S. ; Dutta S. Efficient preparation of the esters of biomass-derived isohexides by base-catalyzed transesterification under solvent-free conditions . Ind. Eng. Chem. Res. , 2023 , 62 ( 43 ), 17483 - 17492 . doi: 10.1021/acs.iecr.3c01915 http://dx.doi.org/10.1021/acs.iecr.3c01915
Yuan Q. ; Zhou T. ; Li L. ; Zhang J. H. ; Liu X. F. ; Ke X. L. ; Zhang A. M. Hydrogen bond breaking of TPU upon heating: understanding from the viewpoints of molecular movements and enthalpy . RSC Adv. , 2015 , 5 ( 39 ), 31153 - 31165 . doi: 10.1039/c5ra03984c http://dx.doi.org/10.1039/c5ra03984c
丁立伟 . 聚呋喃二甲酸乙二醇酯的聚合反应动力学及其模型 . 浙江大学硕士学位论文 , 2022 .
Flèche G. ; Huchette M. Isosorbide. preparation, properties and chemistry . Starch Stärke , 1986 , 38 ( 1 ), 26 - 30 . doi: 10.1002/star.19860380107 http://dx.doi.org/10.1002/star.19860380107
Yoon W. J. ; Oh K. S. ; Koo J. M. ; Kim J. R. ; Lee K. J. ; Im S. S. Advanced polymerization and properties of biobased high T g polyester of isosorbide and 1 , 4 -cyclohexanedicarboxylic acid through in situ acetylation . Macromolecules, 2013, 46 ( 8 ), 2930 - 2940 . doi: 10.1021/ma4001435 http://dx.doi.org/10.1021/ma4001435
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构