浏览全部资源
扫码关注微信
1.中国科学技术大学应用化学与工程学院 合肥 230026
2.中国科学院长春应用化学研究所 高分子科学与技术全国重点实验室 长春 130022
E-mail: sjliu@ciac.ac.cn
xhwang@ciac.ac.cn
收稿日期:2025-06-10,
录用日期:2025-07-04,
网络出版日期:2025-08-04,
移动端阅览
周浩, 刘顺杰, 陈佩, 曹瀚, 卓春伟, 王献红. 高分子铝卟啉催化下环氧化物与二氧化碳的光热聚合. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25143
Zhou, H.; Liu, S. J.; Chen, P.; Cao, H.; Zhuo, C. W.; Wang, X. H. Photothermal polymerization of epoxides and carbon dioxide catalyzed by polymeric aluminum porphyrin. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25143
周浩, 刘顺杰, 陈佩, 曹瀚, 卓春伟, 王献红. 高分子铝卟啉催化下环氧化物与二氧化碳的光热聚合. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25143 DOI: CSTR: 32057.14.GFZXB.2025.7446.
Zhou, H.; Liu, S. J.; Chen, P.; Cao, H.; Zhuo, C. W.; Wang, X. H. Photothermal polymerization of epoxides and carbon dioxide catalyzed by polymeric aluminum porphyrin. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25143 DOI: CSTR: 32057.14.GFZXB.2025.7446.
光热聚合兼备光响应的时空可控性与热聚合的高效性,具有广阔的应用前景. 本研究设计开发了铝卟啉主链型高分子催化剂(P
(
m
R)
-Cat)用于催化环氧化物与CO
2
的高效光热聚合. P
(
m
R)
-Cat采用模块化合成策略,为系统研究其结构与性能关系提供了基础. 研究表明,随着活性中心间距的增大(
m
=2
6
10),P
(
m
H)
-Cat的分子内协同效应减弱,而光热效率保持稳定(
η
≈23.8%). 随着卟啉meso位苯环对位取代基吸电子能力增强(R=
t
Bu
H
Br),催化剂的协同效应增强,但光热效率依次下降(30.9%、23.8%、15.8%). 综合催化剂的协同效应与光热转换能力,P
(2
H)
-Cat在催化环氧丙烷(PO)与CO
2
光热聚合时具有最佳的性能(TOF=660 h
-1
,聚合物选择性
>
99%). 此外,多活性中心的局部富集效应使其在极低催化剂用量下([PO
]
/[Al
]
=20000/1)仍能保持催化性能. 本研究不仅优化了光热聚合体系,也为催化剂的模块化设计提供了新思路.
Photothermal polymerization offers both the spatiotemporal controllability of light-responsive processes and the high efficiency of thermal polymerization
making it highly promising for practical applications. In this work
an aluminum porphyrin backbone polymeric catalyst (P
(
m
R)
-Cat) was developed for the efficient photothermal copolymerization of epoxides and CO
2
. The modular synthesis strategy provides a basis for systematically studying the structure-performance relationship of P
(
m
R)
-Cat. The study showed that increasing the spatial distance of the active centers (
m
=2
6
10) impaired the synergistic effect of P
(
m
H)
-Cat
but the photothermal efficiency remained stable (
η
≈23.8%). Meanwhile
as the electron-withdrawing ability of the
para
-substituent of porphyrin meso-benzene increases (R =
t
Bu
H
Br)
the synergistic effect of the catalyst increases
but the
η
decreases (30.9%
23.8%
15.8%). Taking into account both synergistic catalysis and photothermal performance
P
(2
H)
-Cat exhibited the best catalytic activity in the photothermal copolymerization of propylene oxide (PO) and CO
2
(TOF=660 h⁻
1
polymer selectivity
>
99%). Moreover
due to the local enrichment of multiple active centers
P
(2
H)
-Cat maintained catalytic performance even at extremely low loadings ([PO
]
/[Al
]
=20000/1). This study not only optimizes photothermal polymerization systems but also offers a new perspective on the modular design of polymer catalysts.
Saini N. ; Malik A. ; Jain S. L. Light driven chemical fixation and conversion of CO 2 into cyclic carbonates using transition metals: A review on recent advancements . Coord. Chem. Rev. , 2024 , 502 , 215636 . doi: 10.1016/j.ccr.2023.215636 http://dx.doi.org/10.1016/j.ccr.2023.215636
Chen G. B. ; Waterhouse G. I. N. ; Shi R. ; Zhao J. Q. ; Li Z. H. ; Wu L. Z. ; Tung C. H. ; Zhang T. R. From solar energy to fuels: recent advances in light-driven C1 chemistry . Angew. Chem. Int. Ed. , 2019 , 58 ( 49 ), 17528 - 17551 . doi: 10.1002/anie.201814313 http://dx.doi.org/10.1002/anie.201814313
Dai L. ; Zhang Z. F. ; Chen X. Y. Reduction of unactivated alkyl chlorides enabled by light-induced single electron transfer . Sci. China Chem. , 2024 , 67 ( 2 ), 471 - 481 . doi: 10.1007/s11426-023-1787-3 http://dx.doi.org/10.1007/s11426-023-1787-3
Steinhardt R. C. ; Steeves T. M. ; Wallace B. M. ; Moser B. ; Fishman D. A. ; Esser-Kahn A. P. Photothermal nanoparticle initiation enables radical polymerization and yields unique, uniform microfibers with broad spectrum light . ACS Appl. Mater. Interfaces , 2017 , 9 ( 44 ), 39034 - 39039 . doi: 10.1021/acsami.7b12230 http://dx.doi.org/10.1021/acsami.7b12230
Rejeb R. ; Lenormand P. ; Bichot G. ; Gigmes D. ; Dumur F. ; Schmitt M. ; Pinaud J. ; Lalevée J. NIR photothermal activation in epoxy/anhydride systems for advanced polymerization . Eur. Polym. J. , 2025 , 222 , 113589 . doi: 10.1016/j.eurpolymj.2024.113589 http://dx.doi.org/10.1016/j.eurpolymj.2024.113589
Bonardi A. H. ; Bonardi F. ; Noirbent G. ; Dumur F. ; Gigmes D. ; Dietlin C. ; Lalevée J. Free-radical polymerization upon near-infrared light irradiation, merging photochemical and photothermal initiating methods . J. Polym. Sci. , 2020 , 58 ( 2 ), 300 - 308 . doi: 10.1002/pol.20190079 http://dx.doi.org/10.1002/pol.20190079
Chen P. ; Zhou H. ; Cao H. ; Zhuo C. W. ; Liu S. J. ; Wang X. H. Polymeric catalyst with polymerization-enhanced lewis acidity for CO 2 -based copolymers . Chin. Chem. Lett. , 2023 , 34 ( 12 ), 108630 . doi: 10.1016/j.cclet.2023.108630 http://dx.doi.org/10.1016/j.cclet.2023.108630
Diment W. T. ; Lindeboom W. ; Fiorentini F. ; Deacy A. C. ; Williams C. K. Synergic heterodinuclear catalysts for the ring-opening copolymerization (ROCOP) of epoxides, carbon dioxide, and anhydrides . Acc. Chem. Res. , 2022 , 55 ( 15 ), 1997 - 2010 . doi: 10.1021/acs.accounts.2c00197 http://dx.doi.org/10.1021/acs.accounts.2c00197
Cao H. ; Liu S. J. ; Wang X. H. Environmentally benign metal catalyst for the ring-opening copolymerizati on of epoxide and CO 2 : state-of-the-art, opportunities, and challenges . Green Chem. Eng. , 2022 , 3 ( 2 ), 111 - 124 . doi: 10.1016/j.gce.2021.11.005 http://dx.doi.org/10.1016/j.gce.2021.11.005
Inoue S. ; Koinuma H. ; Tsuruta T. Copolymerization of carbon dioxide and epoxide . J. Polym. Sci., Part B : Polym. Lett., 1969 , 7 ( 4 ), 287 - 292 . doi: 10.1002/pol.1969.110070408 http://dx.doi.org/10.1002/pol.1969.110070408
Yang G. W. ; Xie R. ; Zhang Y. Y. ; Xu C. K. ; Wu G. P. Evolution of copolymers of epoxides and CO 2 : catalysts, monomers, architectures, and applications . Chem. Rev. , 2024 , 124 ( 21 ), 12305 - 12380 . doi: 10.1021/acs.chemrev.4c00517 http://dx.doi.org/10.1021/acs.chemrev.4c00517
Bhat G. A. ; Darensbourg D. J. Coordination complexes as catalysts for the coupling reactions of oxiranes and carbon dioxide . Coord. Chem. Rev. , 2023 , 492 , 215277 . doi: 10.1016/j.ccr.2023.215277 http://dx.doi.org/10.1016/j.ccr.2023.215277
Wang X. H. Biodegradable polymers, history tells polymer science's fortune . Chin. J. Polym. Sci. , 2022 , 40 ( 5 ), 431 - 432 . doi: 10.1007/s10118-022-2737-x http://dx.doi.org/10.1007/s10118-022-2737-x
Zhuo C. W. ; Cao H. ; You H. ; Liu S. J. ; Wang X. H. ; Wang F. S. Two-in-one: photothermal ring-opening copolymerization of CO 2 and epoxides . ACS Macro Lett. , 2022 , 11 ( 7 ), 941 - 947 . doi: 10.1021/acsmacrolett.2c00365 http://dx.doi.org/10.1021/acsmacrolett.2c00365
Guo B. ; Feng G. X. ; Manghnani P. N. ; Cai X. L. ; Liu J. ; Wu W. B. ; Xu S. D. ; Cheng X. M. ; Teh C. ; Liu B. A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy . Small , 2016 , 12 ( 45 ), 6243 - 6254 . doi: 10.1002/smll.201602293 http://dx.doi.org/10.1002/smll.201602293
Zou Q. L. ; Abbas M. ; Zhao L. Y. ; Li S. K. ; Shen G. Z. ; Yan X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy . J. Am. Chem. Soc. , 2017 , 139 ( 5 ), 1921 - 1927 . doi: 10.1021/jacs.6b11382 http://dx.doi.org/10.1021/jacs.6b11382
Wu F. ; Sun Y. F. ; Gao H. ; Zhi X. ; Zhao Y. ; Shen Z. Boosting near-infrared photothermal/photoacoustic conversion performance of anthracene-fused porphyrin via paramagnetic ion coordination strategy . Sci. China Chem. , 2023 , 66 ( 1 ), 164 - 173 . doi: 10.1007/s11426-022-1409-3 http://dx.doi.org/10.1007/s11426-022-1409-3
Zhou H. ; Liu S. J. ; Chen P. ; Yang L. H. ; Zhuo C. W. ; Gao F. X. ; Pang X. ; Chen X. S. ; Wang X. H. Polymeric catalyst with discrete distributed active centers for regulating backbone structure of poly(propylene carbonate) . Chin. J. Chem. , 2024 , 42 ( 21 ), 2599 - 2606 . doi: 10.1002/cjoc.202400398 http://dx.doi.org/10.1002/cjoc.202400398
Zhuo C. W. ; You H. ; Gao F. X. ; Liu S. J. ; Wang X. H. ; Wang F. S. Bottlebrush polymeric catalyst: boosting activity for CO 2 /epoxide copolymerization . Fuel , 2023 , 333 , 126434 . doi: 10.1016/j.fuel.2022.126434 http://dx.doi.org/10.1016/j.fuel.2022.126434
刘克共 , 刘顺杰 , 范培鑫 , 张若禹 , 陈学思 , 王献红 . 双功能卟啉铝催化二氧化碳与长链末端环氧化物共聚 . 高分子学报 , 2025 , 56 ( 2 ), 242 - 252 .
Zhuo C. W. ; Qin Y. S. ; Wang X. H. ; Wang F. S. Temperature-responsive catalyst for the coupling reaction of carbon dioxide and propylene oxide . Chin. J. Chem. , 2018 , 36 ( 4 ), 299 - 305 . doi: 10.1002/cjoc.201800019 http://dx.doi.org/10.1002/cjoc.201800019
Wang K. J. ; Si H. ; Wan Q. ; Wang Z. M. ; Qin A. J. ; Tang B. Z. Luminescent two-way reversible shape memory polymers prepared by hydroxyl-yne click polymerization . J. Mater. Chem. C , 2020 , 8 ( 45 ), 16121 - 16128 . doi: 10.1039/d0tc03888a http://dx.doi.org/10.1039/d0tc03888a
Wang E. H. ; Liu S. J. ; Cao H. ; Zhuo C. W. ; Wang X. H. ; Wang F. S. Chain-transfer-catalyst: strategy for construction of site-specific functional CO 2 -based polycarbonates . Sci. China Chem. , 2022 , 65 ( 1 ), 162 - 169 . doi: 10.1007/s11426-021-1098-4 http://dx.doi.org/10.1007/s11426-021-1098-4
Cao H. ; Qin Y. S. ; Zhuo C. W. ; Wang X. H. ; Wang F. S. Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO 2 -based polymers . ACS Catal. , 2019 , 9 ( 9 ), 8669 - 8676 . doi: 10.1021/acscatal.9b02741 http://dx.doi.org/10.1021/acscatal.9b02741
Yang L. H. ; Liu S. J. ; Zhou Z. Z. ; Zhang R. Y. ; Zhou H. ; Zhuo C. W. ; Wang X. H. Aggregate catalysts: regulating multimetal cooperativity for CO 2 /epoxide copolymerization . Macromolecules , 2024 , 57 ( 1 ), 150 - 161 . doi: 10.1021/acs.macromol.3c02222 http://dx.doi.org/10.1021/acs.macromol.3c02222
Si H. ; Wang K. J. ; Song B. ; Qin A. J. ; Tang B. Z. Organobase-catalysed hydroxyl-yne click polymerization . Polym. Chem. , 2020 , 11 ( 14 ), 2568 - 2575 . doi: 10.1039/d0py00095g http://dx.doi.org/10.1039/d0py00095g
Song B. ; Lu D. ; Qin A. J. ; Tang B. Z. Combining hydroxyl-yne and thiol-ene click reactions to facilely access sequence-defined macromolecules for high-density data storage . J. Am. Chem. Soc. , 2022 , 144 ( 4 ), 1672 - 1680 . doi: 10.1021/jacs.1c10612 http://dx.doi.org/10.1021/jacs.1c10612
Abraham R. J. The proton magnetic resonance spectra of porphyrins . Mol. Phys. , 1961 , 4 ( 2 ), 145 - 152 . doi: 10.1080/00268976100100191 http://dx.doi.org/10.1080/00268976100100191
Zheng W. Q. ; Shan N. ; Yu L. X. ; Wang X. Q. UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins . Dyes Pigm. , 2008 , 77 ( 1 ), 153 - 157 . doi: 10.1016/j.dyepig.2007.04.007 http://dx.doi.org/10.1016/j.dyepig.2007.04.007
Choi M. S. One-dimensional porphyrin H-aggregates induced by solvent polarity . Tetrahedron Lett. , 2008 , 49 ( 49 ), 7050 - 7053 . doi: 10.1016/j.tetlet.2008.09.140 http://dx.doi.org/10.1016/j.tetlet.2008.09.140
Egawa Y. ; Hayashida R. ; Anzai J. I. pH-induced interconversion between J-aggregates and H-aggregates of 5 , 10 , 15 , 20-tetrakis( 4 -sulfonatophenyl)porphyrin in polyelectrolyte multilayer films . Langmuir , 2007, 23 ( 26 ), 13146 - 13150 . doi: 10.1021/la701957b http://dx.doi.org/10.1021/la701957b
Kuttassery F. ; Sagawa S. ; Mathew S. ; Nabetani Y. ; Iwase A. ; Kudo A. ; Tachibana H. ; Inoue H. Water splitting on aluminum porphyrins to form hydrogen and hydrogen peroxide by one photon of visible light . ACS Appl. Energy Mater. , 2019 , 2 ( 11 ), 8045 - 8051 . doi: 10.1021/acsaem.9b01552 http://dx.doi.org/10.1021/acsaem.9b01552
Lyu Y. ; Xie C. ; Chechetka S. A. ; Miyako E. ; Pu K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons . J. Am. Chem. Soc. , 2016 , 138 ( 29 ), 9049 - 9052 . doi: 10.1021/jacs.6b05192 http://dx.doi.org/10.1021/jacs.6b05192
Zhao Y. W. ; Cai X. ; Zhang Y. ; Chen C. C. ; Wang J. E. ; Pei R. J. Porphyrin-based metal-organic frameworks: protonation induced Q band absorption . Nanoscale , 2019 , 11 ( 25 ), 12250 - 12258 . doi: 10.1039/c9nr02463h http://dx.doi.org/10.1039/c9nr02463h
Li Y. Y. ; Li G. C. ; Zhang Q. ; Li Y. X. ; Jia Q. F. ; Zhang W. Y. ; Feng X. X. ; Xu W. B. ; Liu J. C. Heavy atom effect on water-soluble porphyrin photosensitizers for photodynamic therapy . Chem. Phys. Lett. , 2021 , 784 , 139091 . doi: 10.1016/j.cplett.2021.139091 http://dx.doi.org/10.1016/j.cplett.2021.139091
Cao H. ; Zhang R. Y. ; Zhou Z. Z. ; Liu S. J. ; Tao Y. H. ; Wang F. S. ; Wang X. H. On-demand transformation of carbon dioxide into polymers enabled by a comb-shaped metallic oligomer catalyst . ACS Catal. , 2022 , 12 ( 1 ), 481 - 490 . doi: 10.1021/acscatal.1c04431 http://dx.doi.org/10.1021/acscatal.1c04431
Eisenhardt K. H. S. ; Fiorentini F. ; Lindeboom W. ; Williams C. K. Quantifying CO 2 insertion equilibria for low-pressure propene oxide and carbon dioxide ring opening copolymerization catalysts . J. Am. Chem. Soc. , 2024 , 146 ( 15 ), 10451 - 10464 . doi: 10.1021/jacs.3c13959 http://dx.doi.org/10.1021/jacs.3c13959
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构