浏览全部资源
扫码关注微信
武汉理工大学化学化工与生命科学学院 武汉 430070
E-mail: ninglin.whut@gmail.com, ninglin@whut.edu.cn
收稿日期:2025-06-27,
录用日期:2025-07-31,
网络出版日期:2025-09-25,
移动端阅览
陈阳, 林宁. 纤维素纳米晶的表面接枝修饰及聚酯复合材料的力学增强效应. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25156
Chen, Y.; Lin, N. Surface grafting modifications of cellulose nanocrystals and mechanical enhancement for polyester composites. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25156
陈阳, 林宁. 纤维素纳米晶的表面接枝修饰及聚酯复合材料的力学增强效应. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25156 DOI: CSTR: 32057.14.GFZXB.2025.7455.
Chen, Y.; Lin, N. Surface grafting modifications of cellulose nanocrystals and mechanical enhancement for polyester composites. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25156 DOI: CSTR: 32057.14.GFZXB.2025.7455.
纤维素纳米晶(CNC)以其优异机械性能等优势常用于复合材料的增强填料,而复合材料的力学增强效果常与纳米增强填料的分散性以及界面相容性有着密切的联系. 本研究在CNC表面分别共价接枝蓖麻油和聚乳酸链,增强其与聚酯基质的相容性,制备力学增强复合材料. 通过计算,CNC-
g
-CO的表面接枝率为205.30 mg/g
CNC
,表面取代度为12.60%;CNC-
g
-PLA的表面接枝率为431.90 mg/g
CNC
,表面取代度为9.14%. 通过Hansen溶解度参数对复合体系的相容性进行预测,进一步采用显微红外成像对CNC在基质中的分散性进行可视化评估. 结果显示,CNC的表面修饰显著改善了其与基质间的相容性和分散性. 复合材料的热力学性能进一步证明了体系中的界面增容和力学增强效应.
Cellulose nanocrystals (CNC) are commonly used as reinforcing fillers for composites due to their excellent mechanical properties and other advantages
and the mechanical enhancement of composites is often closely related to the dispersion of the nanoreinforcing fillers as well as the interfacial compatibility. In this study
castor oil and polylactic acid chains were covalently grafted on the surface of CNC
respectively
to enhance its compatibility with polyester matrix and prepare mechanically enhanced composites. The surface grafting rate of CNC-
g
-CO was calculated to be 205.30 mg/g
CNC
with a surface substitution of 12.60%
while the surface grafting rate of CNC-
g
-PLA was 431.90 mg/g
CNC
with a surface substitution of 9.14%. The compatibility of the composite systems was predicted by the Hansen solubility parameters
and the dispersion of CNC in the matrix was further evaluated visually using micro-infrared imaging. The results showed that the surface modification of CNC significantly improved the compatibility and dispersion between it and the matrix. The thermodynamic properties of the composites further demonstrated the interfacial capacitation and mechanical enhancement effects in the systems.
Vanzetto A. B. ; Beltrami L. V. R. ; Zattera A. J. Textile waste as precursors in nanocrystalline cellulose synthesis . Cellulose , 2021 , 28 ( 11 ), 6967 - 6981 . doi: 10.1007/s10570-021-03982-9 http://dx.doi.org/10.1007/s10570-021-03982-9
段博 , 涂虎 , 张俐娜 . 可持续高分子-纤维素新材料研究进展 . 高分子学报 , 2020 , 51 ( 1 ), 66 - 86 . doi: 10.11777/j.issn1000-3304.2020.19160 http://dx.doi.org/10.11777/j.issn1000-3304.2020.19160
胡宇 , 孙辉 , 杨彪 , 黄斌 , 许国志 . 聚乙烯醇/半纤维素/纤维素纳米晶复合膜的制备和性能 . 高分子学报 , 2016 , 47 ( 11 ), 1615 - 1620 .
Gomri C. ; Cretin M. ; Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-a comprehensive review . Carbohydr. Polym. , 2022 , 294 , 119790 . doi: 10.1016/j.carbpol.2022.119790 http://dx.doi.org/10.1016/j.carbpol.2022.119790
Sabra A. ; Anderson P. J. ; Carson M. ; Shuja A. ; Sunasee R. ; Ckless K. 320 immunological and oxidative responses caused by cellulose nanocrystal (CNCs) derivatives designed for biomedical applications, in human and mouse cells. Free . Radic . Biol . Med. , 2017, 112 , 209 - 210 . doi: 10.1016/j.freeradbiomed.2017.10.333 http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.333
Du H. S. ; Liu W. ; Zhang M. M. ; Si C. L. ; Zhang X. Y. ; Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications . Carbohydr. Polym. , 2019 , 209 , 130 - 144 . doi: 10.1016/j.carbpol.2019.01.020 http://dx.doi.org/10.1016/j.carbpol.2019.01.020
Kargarzadeh H. ; Huang J. ; Lin N. ; Ahmad I. ; Mariano M. ; Dufresne A. ; Thomas S. ; Gałęski A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites . Prog. Polym. Sci. , 2018 , 87 , 197 - 227 . doi: 10.1016/j.progpolymsci.2018.07.008 http://dx.doi.org/10.1016/j.progpolymsci.2018.07.008
Li Z. K. ; Zhu G. ; Lin N. Dispersibility characterization of cellulose nanocrystals in polymeric-based composites . Biomacromolecules , 2022 , 23 ( 11 ), 4439 - 4468 . doi: 10.1021/acs.biomac.2c00987 http://dx.doi.org/10.1021/acs.biomac.2c00987
Foster E. J. ; Moon R. J. ; Agarwal U. P. ; Bortner M. J. ; Bras J. ; Camarero-Espinosa S. ; Chan K. J. ; Clift M. J. D. ; Cranston E. D. ; Eichhorn S. J. ; Fox D. M. ; Hamad W. Y. ; Heux L. ; Jean B. ; Korey M. ; Nieh W. ; Ong K. J. ; Reid M. S. ; Renneckar S. ; Roberts R. ; Shatkin J. A. ; Simonsen J. ; Stinson-Bagby K. ; Wanasekara N. ; Youngblood J. Current characterization methods for cellulose nanomaterials . Chem. Soc. Rev. , 2018 , 47 ( 8 ), 2609 - 2679 . doi: 10.1039/c6cs00895j http://dx.doi.org/10.1039/c6cs00895j
Zhang Y. ; Lan P. ; Yu Z. C. ; Xia T. ; Lin N. Grafting kinetics and compatibility simulation in surface modification of cellulose nanocrystals with poly(lactic acid) for composites . Macromolecules , 2024 , 57 ( 16 ), 7689 - 7700 .
Wohlert J. ; Chen P. ; Berglund L. A. ; Re G. L. Acetylation of nanocellulose: miscibility and reinforcement mechanisms in polymer nanocomposites . ACS Nano , 2024 , 18 ( 3 ), 1882 - 1891 . doi: 10.1021/acsnano.3c04872 http://dx.doi.org/10.1021/acsnano.3c04872
Hua, X. D.;, Wu, H.;, Liu, Y. X.;, Hu, J.;, Duan, Y. X.;, Zhang, J. M. Probing into the selective nucleation mechanism of poly(methyl methacrylate) modified cellulose nanocrystals in enantiomeric poly(lactic acid) blends . Macromolecules , 2025 , 58 ( 5 ), 2508 - 2520 . doi: 10.1021/acs.macromol.4c02545 http://dx.doi.org/10.1021/acs.macromol.4c02545
Abbott S. J. ; Hansen C. M. ; Yamamoto H. Hansen Solubility Parameters in Practice Software, 5th ed.; CRC Press: 2018 ; pp 10 - 15 .
Guo X. ; Wu Y. Q. IN SITU visualization of water adsorption in cellulose nanofiber film with micrometer spatial resolution using micro-FTIR imaging . J. Wood Chem. Technol. , 2018 , 38 ( 5 ), 361 - 370 . doi: 10.1080/02773813.2018.1488869 http://dx.doi.org/10.1080/02773813.2018.1488869
Sienkiewicz A. M. ; Czub P. The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol A . Ind. Crops Prod. , 2016 , 83 , 755 - 773 . doi: 10.1016/j.indcrop.2015.11.071 http://dx.doi.org/10.1016/j.indcrop.2015.11.071
Siqueira G. ; Bras J. ; Dufresne A. New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate . Langmuir , 2010 , 26 ( 1 ), 402 - 411 . doi: 10.1021/la9028595 http://dx.doi.org/10.1021/la9028595
Phalak G. ; Patil D. ; Vignesh V. ; Mhaske S. Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application . Ind. Crops Prod. , 2018 , 119 , 9 - 21 . doi: 10.1016/j.indcrop.2018.04.001 http://dx.doi.org/10.1016/j.indcrop.2018.04.001
Tan L. ; Dufresne A. ; Zhu G. ; Lin N. Regioselective modification at reducing end aldehydes of cellulose nanocrystals and mercerization . ACS Sustainable Chem. Eng. , 2023 , 11 ( 11 ), 4485 - 4497 . doi: 10.1021/acssuschemeng.2c07713 http://dx.doi.org/10.1021/acssuschemeng.2c07713
Le Gars M. ; Roger P. ; Belgacem N. ; Bras J. Role of solvent exchange in dispersion of cellulose nanocrystals and their esterification using fatty acids as solvents . Cellulose , 2020 , 27 ( 8 ), 4319 - 4336 . doi: 10.1007/s10570-020-03101-0 http://dx.doi.org/10.1007/s10570-020-03101-0
Wu H. ; Nagarajan S. ; Zhou L. J. ; Duan Y. X. ; Zhang J. M. Synthesis and characterization of cellulose nanocrystal-graft-poly( D -lactide) and its nanocomposite with poly( L -lactide) . Polymer , 2016 , 103 , 365 - 375 . doi: 10.1016/j.polymer.2016.09.070 http://dx.doi.org/10.1016/j.polymer.2016.09.070
Lin N. ; Dufresne A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees . Nanoscale , 2014 , 6 ( 10 ), 5384 - 5393 . doi: 10.1039/c3nr06761k http://dx.doi.org/10.1039/c3nr06761k
Yoo Y. ; Youngblood J. P. Green one-pot synthesis of surface hydrophobized cellulose nanocrystals in aqueous medium . ACS Sustainable Chem. Eng. , 2016 , 4 ( 7 ), 3927 - 3938 . doi: 10.1021/acssuschemeng.6b00781 http://dx.doi.org/10.1021/acssuschemeng.6b00781
Ly E. H. B. ; Bras J. ; Sadocco P. ; Belgacem M. N. ; Dufresne A. ; Thielemans W. Surface functionalization of cellulose by grafting oligoether chains . Mater. Chem. Phys. , 2010 , 120 ( 2-3 ), 438 - 445 . doi: 10.1016/j.matchemphys.2009.11.032 http://dx.doi.org/10.1016/j.matchemphys.2009.11.032
Tian D. L. ; Wang F. F. ; Yang Z. J. ; Niu X. L. ; Wu Q. ; Sun P. C. High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals . Carbohydr. Polym. , 2019 , 219 , 191 - 200 . doi: 10.1016/j.carbpol.2019.05.029 http://dx.doi.org/10.1016/j.carbpol.2019.05.029
Lin N. ; Yu J. H. ; Chang P. R. ; Li J. L. ; Huang J. Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties . Polym. Compos. , 2011 , 32 ( 3 ), 472 - 482 . doi: 10.1002/pc.21066 http://dx.doi.org/10.1002/pc.21066
Kamal M. R. ; Khoshkava V. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites . Carbohydr. Polym. , 2015 , 123 , 105 - 114 . doi: 10.1016/j.carbpol.2015.01.012 http://dx.doi.org/10.1016/j.carbpol.2015.01.012
0
浏览量
50
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构