1.中国科学院化学研究所 工程塑料院重点实验室 北京 100190
2.中国铁道科学研究院集团有限公司 高速铁路轨道系统全国重点实验室 北京 100081
3.河北铁科翼辰新材科技有限公司 石家庄 052160
4.中国科学院大学 北京 100049
E-mail: xiadong@iccas.ac.cn
收稿:2025-08-31,
网络出版:2025-12-12,
移动端阅览
朱平, 董全霄, 袁丽慧, 仇超, 仇鹏, 董侠, 王笃金. 聚氨酯弹性垫板老化前后的微观结构与单轴拉伸形变机理. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25163.
Zhu, P.; Dong, Q. X.; Yuan, L. H.; Qiu, C.; Qiu, P.; Dong, X.; Wang, D. J. Structural evolution and mechanism of original and artificially-aged elastic polyurethane plates under uniaxial tension. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25163.
朱平, 董全霄, 袁丽慧, 仇超, 仇鹏, 董侠, 王笃金. 聚氨酯弹性垫板老化前后的微观结构与单轴拉伸形变机理. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25163. DOI: CSTR: 32057.14.GFZXB.2025.7465.
Zhu, P.; Dong, Q. X.; Yuan, L. H.; Qiu, C.; Qiu, P.; Dong, X.; Wang, D. J. Structural evolution and mechanism of original and artificially-aged elastic polyurethane plates under uniaxial tension. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25163. DOI: CSTR: 32057.14.GFZXB.2025.7465.
聚氨酯弹性垫板是高速铁路无砟轨道结构扣件系统中提供弹性缓振、保证列车高速运行安全和舒适的关键部件. 本研究通过示差扫描量热法、扫描电子显微镜、傅里叶变换红外光谱、原位同步辐射X射线广角衍射/小角散射等多种表征方法系统分析了聚氨酯弹性垫板在高低温循环老化、湿热老化和高温老化前后的微观结构变化及其在单轴拉伸外场下的结构演化. 高低温老化对材料影响不显著;湿热老化对聚氨酯弹性垫板的影响最大,导致样品泡孔平均直径减小,泡孔密度增大,泡孔壁出现裂纹,微相分离程度显著提高,硬段玻璃化温度提高,聚四亚甲基氧醚(PTMO)软段受硬段限制作用减弱,发生一定程度的结晶,导致材料的刚度提高,弹性下降. 在单轴拉伸过程中,湿热老化后和高温老化样品的PTMO软段发生应变诱导结晶,提高了样品的拉伸及抗撕裂强度.
Elastic polyurethane plates (EPPs) serve as the sole source of elastic cushioning for the ballastless track structure of high-speed railways
playing a crucial role in ensuring the safety and comfort of high-speed railway cars. This study investigated the microstructural changes in EPPs before and after exposure to thermal cycling between high and low temperatures
humidity-heat aging
and high-temperature aging
as well as the microstructural evolution under uniaxial te
nsile deformation. Multiple analytical techniques were employed
including differential scanning calorimetry (DSC)
Fourier transform infrared spectroscopy (FTIR)
scanning electron microscopy (SEM)
and
in situ
synchrotron radiation wide angle X-ray diffraction/small angle X-ray scattering (WAXD/SAXS). The samples subjected to thermal cycling between high and low temperatures exhibited little change. Humidity-heat aging had the most significant impact
causing the average cellular diameter to decrease
cellular density to increase
and cracks to appear in the cell walls. The extent of microphase separation was improved remarkably after humidity-heat aging. The glass transition temperature of the hard segment also increased. The restriction effect of the hard segments on the poly(tetramethylene oxide) (PTMO) soft segments was weakened
resulting in a certain degree of crystallization of the PTMO soft segments after aging. This could increase the stiffness and decrease the elasticity. After both humidity-heat aging and high-temperature aging
the PTMO soft segments underwent strain-induced crystallization under large strains
which enhanced the tensile and tear strengths of the materials.
Liu K. ; Tong J. H. ; Huang M. Y. ; Wang F. ; Pang H. P. Model and experimental studies on the effects of load characteristics and polyurethane densities on fatigue damage of rigid polyurethane grouting materials . Constr. Build. Mater. , 2022 , 347 , 128595 . doi: 10.1016/j.conbuildmat.2022.128595 http://dx.doi.org/10.1016/j.conbuildmat.2022.128595
Neuhaus C. ; Lion A. ; Johlitz M. ; Heuler P. ; Barkhoff M. ; Duisen F. Fatigue behaviour of an elastomer under consideration of ageing effects . Int. J. Fatigue , 2017 , 104 , 72 - 80 . doi: 10.1016/j.ijfatigue.2017.07.010 http://dx.doi.org/10.1016/j.ijfatigue.2017.07.010
Na J. X. ; Liu Y. ; Fan Y. S. ; Mu W. L. ; Chen X. ; Yan Y. K. Effect of temperature on the joint strength of a silyl-modified polymer-based adhesive . J. Adhes. , 2017 , 93 ( 8 ), 626 - 639 . doi: 10.1080/00218464.2015.1128330 http://dx.doi.org/10.1080/00218464.2015.1128330
杨睿 . 聚合物复合材料老化研究的现状及挑战 . 高分子材料科学与工程 , 2015 , 31 ( 02 ), 181 - 184 .
Liu X. ; Ren X. P. ; Yang R. Infectious behavior in photo-oxidation of polymers . Chinese J. Polym. Sci. , 2020 , 38 ( 3 ), 248 - 256 . doi: 10.1007/s10118-020-2344-7 http://dx.doi.org/10.1007/s10118-020-2344-7
Li X. K. ; Stribeck A. ; Schulz I. ; Pöselt E. ; Eling B. ; Hoell A. Nanostructure of thermally aged thermoplastic polyurethane and its evolution under strain . Eur. Polym. J. , 2016 , 81 , 569 - 581 . doi: 10.1016/j.eurpolymj.2015.11.027 http://dx.doi.org/10.1016/j.eurpolymj.2015.11.027
Hong S. J. ; Park N. Y. ; Ju S. ; Lee A. ; Shin Y. ; Kim J. S. ; Um M. K. ; Yi J. W. ; Chae H. G. ; Park T. Molecular degradation mechanism of segmented polyurethane and life prediction through accelerated aging test . Polym. Test. , 2023 , 124 , 108086 . doi: 10.1016/j.polymertesting.2023.108086 http://dx.doi.org/10.1016/j.polymertesting.2023.108086
Xie F. W. ; Zhang T. L. ; Bryant P. ; Kurusingal V. ; Colwell J. M. ; Laycock B. Degradation and stabilization of polyurethane elastomers . Prog. Polym. Sci. , 2019 , 90 , 211 - 268 . doi: 10.1016/j.progpolymsci.2018.12.003 http://dx.doi.org/10.1016/j.progpolymsci.2018.12.003
Bahrololoumi A. ; Mohammadi H. ; Moravati V. ; Dargazany R. A physically-based model for thermo-oxidative and hydrolytic aging of elastomers . Int. J. Mech. Sci. , 2021 , 194 , 106193 . doi: 10.1016/j.ijmecsci.2020.106193 http://dx.doi.org/10.1016/j.ijmecsci.2020.106193
崔学良 , 董全霄 , 仇鹏 , 王月华 , 孙占英 , 王鑫 . 聚氨酯老化机理与寿命预测研究进展 . 铁道建筑 , 2023 , 63 ( 08 ), 141 - 144 .
Zhou L. J. ; Liang D. ; He X. L. ; Li J. H. ; Tan H. ; Li J. S. ; Fu Q. ; Gu Q. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery . Biomaterials , 2012 , 33 ( 9 ), 2734 - 2745 . doi: 10.1016/j.biomaterials.2011.11.009 http://dx.doi.org/10.1016/j.biomaterials.2011.11.009
Yin S. N. ; Xia Y. R. ; Jia Q. ; Hou Z. S. ; Zhang N. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates . J. Biomater. Sci. Polym. Ed. , 2017 , 28 ( 1 ), 119 - 138 . doi: 10.1080/09205063.2016.1252303 http://dx.doi.org/10.1080/09205063.2016.1252303
Taourit S. ; Le Gac P. Y. ; Fayolle B. Relationship between network structure and ultimate properties in polyurethane during a chain scission process . Polym. Degrad. Stab. , 2022 , 201 , 109971 . doi: 10.1016/j.polymdegradstab.2022.109971 http://dx.doi.org/10.1016/j.polymdegradstab.2022.109971
Zhang G. G. ; Yin T. H. ; Nian G. D. ; Suo Z. G. Fatigue-resistant polyurethane elastomer composites . Extreme Mech. Lett. , 2021 , 48 , 101434 . doi: 10.1016/j.eml.2021.101434 http://dx.doi.org/10.1016/j.eml.2021.101434
Doyle L. ; Weidlich I. Effects of thermal and mechanical cyclic loads on polyurethane pre-insulated pipes . Fatigue Fract. Eng. Mater. Struct. , 2021 , 44 ( 1 ), 156 - 168 . doi: 10.1111/ffe.13347 http://dx.doi.org/10.1111/ffe.13347
Yeob C. ; Shin J. C. ; Young L. ; Hyeon K. ; Keun K. Accelerated life testing of thermoplastic polyurethane encapsulants used in underwater acoustic sensor . Macromol. Res. , 2020 , 28 ( 5 ), 510 - 516 . doi: 10.1007/s13233-020-8066-4 http://dx.doi.org/10.1007/s13233-020-8066-4
Wang X. H. ; Zhan S. N. ; Lu Z. Y. ; Li J. ; Yang X. ; Qiao Y. N. ; Men Y. F. ; Sun J. Q. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance . Adv. Mater. , 2020 , 32 ( 50 ), 2005759 . doi: 10.1002/adma.202005759 http://dx.doi.org/10.1002/adma.202005759
吕冬 , 卢影 , 门永锋 . 小角X射线散射技术在高分子表征中的应用 . 高分子学报 , 2021 , 52 ( 07 ), 822 - 839 .
Qin Y. L. ; Zhu P. ; Ouyang C. X. ; Dong X. Chain extender-induced hydrogen bonding organization determines the morphology and properties of thermoplastic polycarbonate polyurethane . Chinese J. Polym. Sci. , 2024 , 42 ( 1 ), 87 - 96 . doi: 10.1007/s10118-023-3010-7 http://dx.doi.org/10.1007/s10118-023-3010-7
Scholz P. ; Wachtendorf V. ; Panne U. ; Weidner S. M. Degradation of MDI-based polyether and polyester-polyurethanes in various environments-effects on molecular mass and crosslinking . Polym. Test. , 2019 , 77 , 105881 . doi: 10.1016/j.polymertesting.2019.04.028 http://dx.doi.org/10.1016/j.polymertesting.2019.04.028
Shintani H. ; Nakamura A. Degradation and cross-linking of polyurethane irradiated by gamma-rays . Polym. Degrad. Stab. , 1991 , 32 ( 2 ), 191 - 208 . doi: 10.1016/0141-3910(91)90050-2 http://dx.doi.org/10.1016/0141-3910(91)90050-2
Teo L. S. ; Chen C. Y. ; Kuo J. F. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s . Macromolecules , 1997 , 30 ( 6 ), 1793 - 1799 . doi: 10.1021/ma961035f http://dx.doi.org/10.1021/ma961035f
Kong Z. Y. ; Tian Q. ; Zhang R. Y. ; Yin J. B. ; Shi L. ; Ying W. B. ; Hu H. ; Yao C. K. ; Wang K. ; Zhu J. Reexamination of the microphase separation in MDI and PTMG based polyurethane: fast and continuous association/dissociation processes of hydrogen bonding . Polymer , 2019 , 185 , 121943 . doi: 10.1016/j.polymer.2019.121943 http://dx.doi.org/10.1016/j.polymer.2019.121943
Zhu P. ; Dong X. ; Wang D. J. Strain-induced crystallization of segmented copolymers: deviation from the classic deformation mechanism . Macromolecules , 2017 , 50 ( 10 ), 3911 - 3921 . doi: 10.1021/acs.macromol.6b02747 http://dx.doi.org/10.1021/acs.macromol.6b02747
Simmons A. ; Hyvarinen J. ; Odell R. A. ; Martin D. J. ; Gunatillake P. A. ; Noble K. R. ; Poole-Warren L. A. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers . Biomaterials , 2004 , 25 ( 20 ), 4887 - 4900 . doi: 10.1016/j.biomaterials.2004.01.004 http://dx.doi.org/10.1016/j.biomaterials.2004.01.004
Zhu P. ; Zhou C. X. ; Wang Y. ; Sauer B. ; Hu W. B. ; Dong X. ; Wang D. J. Reversible-irreversible transition of strain-induced crystallization in segmented copolymers: the critical strain and chain conformation . ACS Appl. Polym. Mater. , 2021 , 3 ( 7 ), 3576 - 3585 . doi: 10.1021/acsapm.1c00462 http://dx.doi.org/10.1021/acsapm.1c00462
Pérez-Camargo R. A. ; Meabe L. ; Liu G. M. ; Sardon H. ; Zhao Y. ; Wang D. J. ; Müller A. J. Even-odd effect in aliphatic polycarbonates with different chain lengths: from poly(hexamethylene carbonate) to poly(dodecamethylene carbonate) . Macromolecules , 2021 , 54 ( 1 ), 259 - 271 . doi: 10.1021/acs.macromol.0c02374 http://dx.doi.org/10.1021/acs.macromol.0c02374
Velankar S. ; Cooper S. L. Microphase separation and rheological properties of polyurethane melts. 2. effect of block incompatibility on the microstructure . Macromolecules , 2000 , 33 ( 2 ), 382 - 394 . doi: 10.1021/ma990817g http://dx.doi.org/10.1021/ma990817g
Yuan L. H. ; Zhu P. ; Wang Y. ; Li X. ; Yang Y. H. ; Du H. ; Dong X. ; Wang D. J. Gas transport properties of poly(ether- b -amide) segmented copolymers: the role of the degree of microphase separation in amorphous regions . J. Membr. Sci. , 2024 , 693 , 122339 . doi: 10.1016/j.memsci.2023.122339 http://dx.doi.org/10.1016/j.memsci.2023.122339
Yeh F. ; Hsiao B. S. ; Sauer B. B. ; Michel S. ; Siesler H. W. In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer . Macromolecules , 2003 , 36 ( 6 ), 1940 - 1954 . doi: 10.1021/ma0214456 http://dx.doi.org/10.1021/ma0214456
Liu Y. ; Peng L. ; Lin J. L. ; Zhou Y. ; Wang D. J. ; Han C. C. ; Huang X. B. ; Dong X. The crystallization behavior regulating nature of hydrogen bonds interaction on polyamide 6,6 by poly(vinyl pyrrolidone) . Chinese J. Polym. Sci. , 2023 , 41 ( 3 ), 394 - 404 . doi: 10.1007/s10118-022-2852-8 http://dx.doi.org/10.1007/s10118-022-2852-8
Scetta G. ; Euchler E. ; Ju J. Z. ; Selles N. ; Heuillet P. ; Ciccotti M. ; Creton C. Self-organization at the crack tip of fatigue-resistant thermoplastic polyurethane elastomers . Macromolecules , 2021 , 54 ( 18 ), 8726 - 8737 . doi: 10.1021/acs.macromol.1c00934 http://dx.doi.org/10.1021/acs.macromol.1c00934
Liu X. ; Ding S. S. ; Wang F. ; Shi Y. L. ; Wang X. H. ; Wang Z. G. Controlling energy dissipation during deformation by selection of the hard-segment component for thermoplastic polyurethanes . Ind. Eng. Chem. Res. , 2022 , 61 ( 25 ), 8821 - 8831 . doi: 10.1021/acs.iecr.2c01018 http://dx.doi.org/10.1021/acs.iecr.2c01018
Zhu P. ; Dong X. ; Huang M. M. ; Wang L. L. ; Qi S. X. ; Wang D. J. Microstructural evolution underlying the ternary stages of the elastic behaviors for poly(ether- b -amide) copolymer elastomers . J. Polym. Sci. Part B Polym. Phys. , 2018 , 56 ( 11 ), 855 - 864 . doi: 10.1002/polb.24600 http://dx.doi.org/10.1002/polb.24600
Fakirov S. ; Fakirov C. ; Fischer E. W. ; Stamm M. Deformation behaviour of poly(ether ester) thermoplastic elastomers as revealed by small-angle X-ray scattering . Polymer , 1991 , 32 ( 7 ), 1173 - 1180 . doi: 10.1016/0032-3861(91)90218-8 http://dx.doi.org/10.1016/0032-3861(91)90218-8
Apostolov A. A. ; Fakirov S. Effect of the block length on the deformation behavior of polyetheresters as revealed by small-angle X-ray scattering . J. Macromol. Sci. Part B , 1992 , 31 ( 3 ), 329 - 355 . doi: 10.1080/00222349208215520 http://dx.doi.org/10.1080/00222349208215520
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构

京公网安备11010802046899号